

ISSN Print: 2664-6781

ISSN Online: 2664-679X

NAAS Rating (2025): 4.77

IJACR 2025; 7(12): 08-18

www.chemistryjournals.net

Received: 02-10-2024

Accepted: 05-11-2024

Dr Vaishnavi A Patel
Veterinary Pathologist, V
Cross Diagnostic Laboratory &
Research Centre, Ahmedabad,
Gujarat, India

Dr Harsh D Jani
Veterinary Physician, Zigly
24x7 Multi-speciality Pet
Hospital, Ahmedabad,
Gujarat, India

Dr Pankaj G Trivedi
Junior Research Fellow,
Livestock Research Station,
College of Veterinary Science
and Animal Husbandry,
Kamdhenu University, Anand,
Gujarat, India

Dr Maitree J Patel
Assistant Professor, College of
Veterinary Science & Animal
Husbandry, Kamdhenu
University, Bhuj, Gujarat,
India

Review Article:

Role of ubiquitin proteasome pathway in cancer development

Vaishnavi A Patel, Harsh D Jani, Pankaj G Trivedi and Maitree J Patel

DOI: <https://www.doi.org/10.33545/26646781.2025.v7.i12a.341>

Abstract

The ubiquitin-proteasome pathway (UPP) is a highly regulated protein degradation system essential for maintaining cellular homeostasis. Its dysregulation plays a central role in cancer development by altering the stability of key proteins involved in cell-cycle control, apoptosis, DNA repair, and hypoxia signaling. Ubiquitination, mediated by E1, E2, and E3 enzymes, determines whether proteins undergo proteasomal degradation or participate in non-proteolytic signaling. Aberrant activity of E3 ligases and deubiquitinating enzymes leads to uncontrolled degradation or accumulation of oncogenes and tumor-suppressor proteins such as p53, cyclins, p27, and Bcl-2. The pathway also regulates apoptosis through modulation of Bcl-2 family proteins, caspases, and IAPs, enabling cancer cells to evade programmed cell death. Additionally, hypoxia-inducible factors (HIFs) are tightly controlled by VHL-mediated ubiquitination, and their dysregulation promotes angiogenesis and tumor progression. Understanding UPP biology has enabled development of novel anticancer therapies, including proteasome inhibitors and E3-targeted drugs.

Keywords: Ubiquitin-proteasome pathway, ubiquitination, protein degradation, cellular homeostasis

Introduction

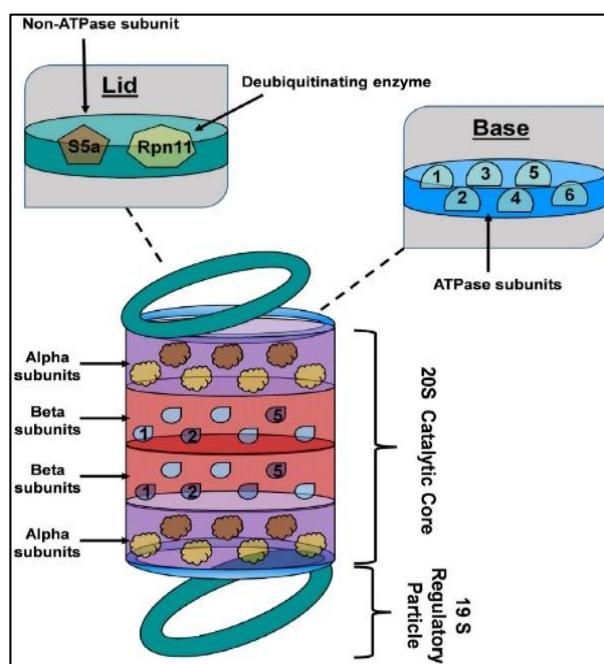
The unexpected "bottom-to-top" discovery of the ubiquitin-proteasome system (UPS) has changed contemporary cell biology and shown that protein degradation is a carefully controlled, selective process crucial for maintaining cellular homeostasis and preventing cancer. Ubiquitination was identified as the molecular signal that targets proteins for proteolysis after early research by Hershko, Ciechanover, and Rose showed that cytosolic protein degradation requires ATP [36, 10]. Over time, the UPS has emerged as a master regulator of cellular processes, including cell cycle progression, apoptosis, DNA repair, transcription, immune surveillance and stress responses [66]. According to [40], dysregulation of UPS components, specifically E3 ubiquitin ligases and deubiquitinating enzymes, can result in aberrant stabilization or degradation of oncogenes and tumor-suppressor proteins, which can drive carcinogenesis, tumor growth, and therapeutic resistance. Therefore, comprehending UPS biology is essential to knowing how cancer develops and has resulted in new therapeutic approaches including E3 ligase-targeting medicines and proteasome inhibitors.

What is Ubiquitin?

Corresponding Author:

Dr Pankaj G Trivedi
Junior Research Fellow,
Livestock Research Station,
College of Veterinary Science
and Animal Husbandry,
Kamdhenu University, Anand,
Gujarat, India,

Ubiquitin is a highly conserved protein with 76 amino acids that is essential for controlling many cellular functions and designating intracellular proteins for destruction. Ubiquitin is a compact, densely folded globular protein that is highly heat-stable and resistant to proteolysis due to its hydrophobic core and vast network of hydrogen bonds^[91]. Its C-terminal glycine residue (Gly76), which protrudes from the protein surface and forms covalent isopeptide bonds with target protein lysine residues or with lysines on other ubiquitin molecules to form polyubiquitin chains, is largely responsible for its functional activity^[94, 66]. These polyubiquitin chains—particularly those linked through Lys48 or Lys29—serve as signals for 26S proteasome-mediated degradation, whereas other linkages such as Lys63 regulate non-proteolytic functions including DNA repair, signaling and transcriptional activation^[9, 93]. Additionally, ubiquitin can bind as a single unit (mono-ubiquitination), which aids in viral budding, endocytosis, and histone modification^[37]. Ubiquitin is regarded as one of the most important regulatory proteins in cellular homeostasis because of its widespread engagement in vital biological pathways and universal presence in eukaryotic cells.


Ubiquitin Enzymatic Cascade

In order to control the stability and destiny of particular substrate proteins, ubiquitin is systematically activated, transferred, and conjugated to them by a highly coordinated enzyme cascade that powers the ubiquitin-proteasome system. The E1 (ubiquitin-activating enzyme) initiates the process by adenylating ubiquitin with ATP to create a high-energy ubiquitin-E1 thioester intermediate^[9, 66]. An E2

(ubiquitin-conjugating enzyme) receives activated ubiquitin and acts as the carrier, interacting with several E3 ligases via its conserved core domain^[93]. Lastly, E3 (ubiquitin ligases) facilitate the ubiquitin transfer from E2 to the target protein and offer substrate selectivity. In certain instances, extra enzymes called E4 ligases (like Ufd2) lengthen ubiquitin chains to guarantee the production of polyubiquitin signals necessary for effective degradation^[41]. Deubiquitinating enzymes (DUBs) balance this process by removing ubiquitin from substrates at different phases, either by regenerating free monomeric ubiquitin or editing polyubiquitin chains. The choice between protein degradation and non-proteolytic functions is regulated by the two main DUB families, UBP/USPs and UBHs^[46, 93].

26S Proteasome

According to^[38], the 26S proteasome is a highly conserved, ATP-dependent complex that breaks down proteins that have been tagged with ubiquitin. It is present in the nucleus and cytoplasm and is made up of one or two 19S regulatory particles and a 20S catalytic core that are formed in an ATP-dependent manner^[65]. Trypsin-like, chymotrypsin-like, and caspase-like proteolytic sites are found in the cylindrical $\alpha\beta\beta\beta\alpha$ structure of the 20S core^[31]. The α -subunit gate controls access to this chamber. Poly-ubiquitinated substrates are identified by the 19S regulator, which then routes them into the 20S core for destruction after unfolding them via its ATPases^[29, 67]. The 26S proteasome works in concert to break down damaged or misfolded proteins into tiny peptides, which are then transformed into amino acids^[87].

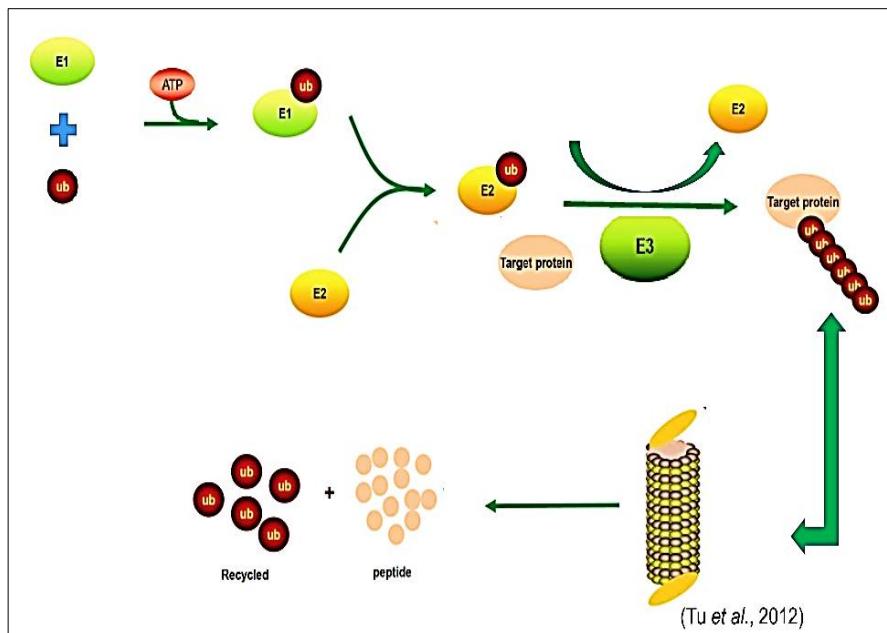


Fig 2: 26S proteasomes are composed of four heptameric stacked rings ($\alpha\beta\beta\beta\alpha$) and the outer rings are made up of α -type subunits whereas the inner two rings are made up of β -type subunits.

Ubiquitination

According to^[9], ubiquitination is a post-translational modification in which the tiny protein ubiquitin is covalently bound to a target protein via an isopeptide bond between the C-terminal glycine of ubiquitin and the ϵ -amino group of a lysine residue on the substrate. Polyubiquitin

chains, which often mark proteins for proteasome breakdown or function as signaling tags that control different physiological processes, can be formed by additional ubiquitin molecules attaching in the same manner.

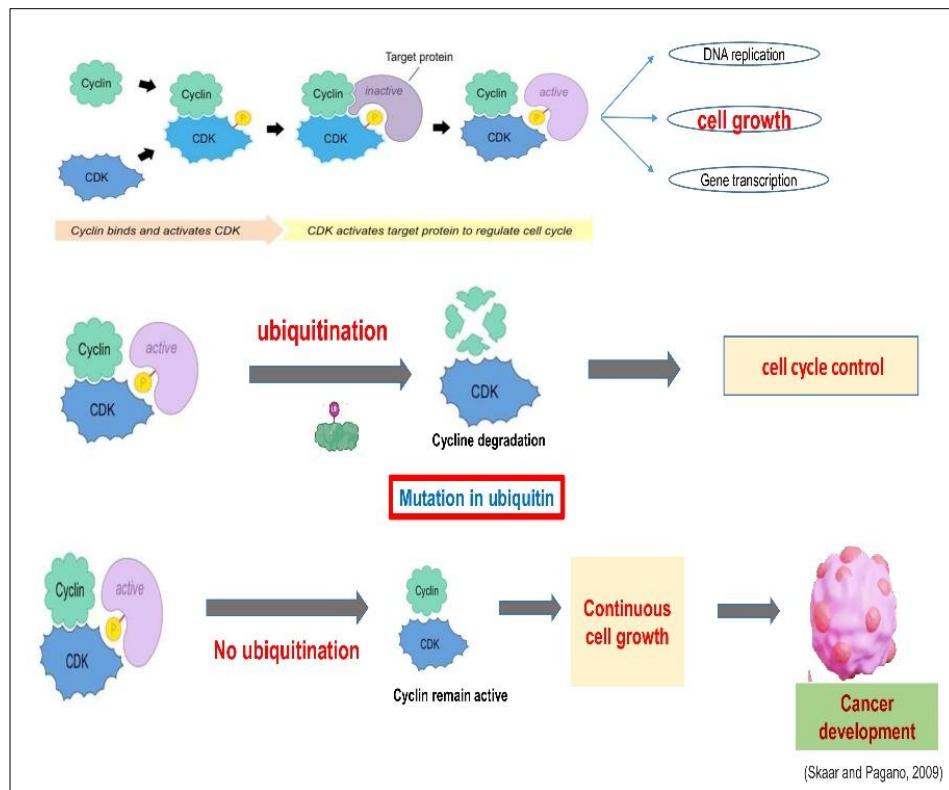
Fig 3: Ubiquitin is activated by the E1 enzyme in the presence of ATP. The E1 enzyme forms a thiol ester bond with ubiquitin, resulting in the formation of ubiquitin-E1 thiol ester. The ubiquitin-E1 thiol ester is recognized by multiple E2 enzymes, which transfer ubiquitin to their active site cysteines. E2 enzymes carry the activated ubiquitin to the substrate protein. E3 enzymes are responsible for transfer of ubi to target protein. Here, polyubiquitination occur. The target protein is degraded by the proteasome. Proteasome cleaves proteins into 6-10 amino acid peptides. After the binding of ubiquitine with target protein the complex is degraded by the proteasome.

Function of UPP

The ubiquitination system functions in a wide variety of cellular processes, including:

- Antigen processing
- Apoptosis
- Biogenesis of organelles
- Cell cycle and division
- DNA transcription and repair
- Differentiation and development
- Immune response and inflammation
- Neural and muscular degeneration
- Maintenance of pluripotency^[77]
- Morphogenesis of neural networks
- Modulation of cell surface receptors, ion channels and the secretory pathway
- Response to stress and extracellular modulators
- Ribosome biogenesis
- Viral infection

Regulation of cell growth


Cell growth is controlled by several groups of genes that work together to maintain normal proliferation and survival. Growth-promoting genes, including growth factors, their receptors, intracellular signaling proteins, and nuclear regulators such as MYC, along with cell-cycle regulators like cyclins and CDKs, stimulate cell division. Tumor suppressor genes including Rb, p53, APC, VHL, and PTEN act as brakes to prevent uncontrolled growth. Apoptosis-regulating genes also play a crucial role, with pro-apoptotic proteins such as BID, Puma, and Noxa promoting cell death, while anti-apoptotic proteins like BCL-2, BCL-XL, and MCL-1 support cell survival. Additionally, transcription factors such as HIF- α and NF- κ B modulate gene expression in response to environmental and cellular signals, further influencing cell growth and homeostasis.

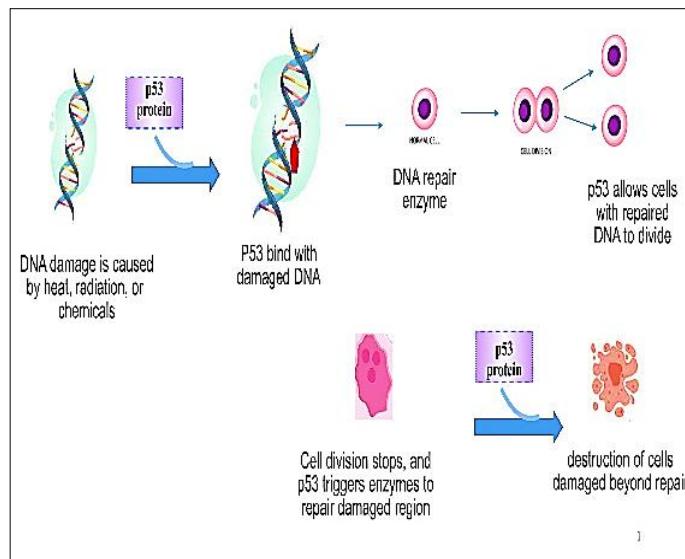
2.1 Role of Ubiquitine Proteasome Pathway in Cell Cycle Control and Cancer Development

The cell cycle is a tightly regulated series of events in which DNA and cellular components are duplicated and accurately segregated into daughter cells. Cyclin-dependent kinases (CDKs), whose activity depends on periodic association with cyclins and inhibition by CDK inhibitors (CKIs), are the main drivers of progression through the four major phases—G1, S, G2, and M^[3, 54]. The unidirectional, irreversible advancement of the cell cycle depends on the timely production and degradation of cyclins, CKIs, and other regulators due to their fluctuating amounts.

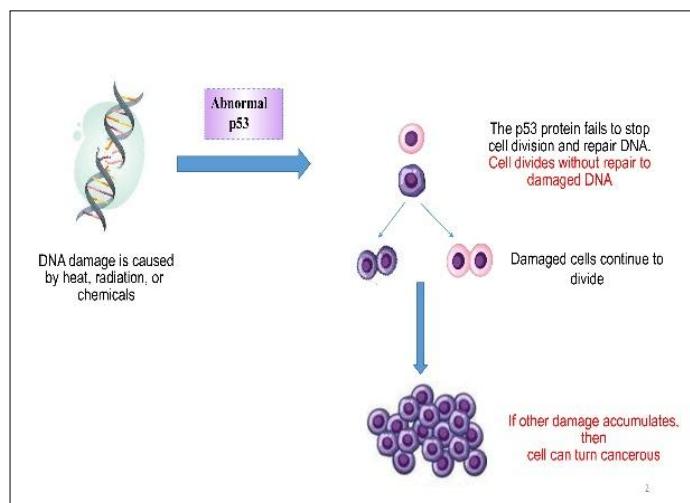
Ubiquitination, a post-translational modification that controls protein stability, location, and function, is a key mechanism governing these variations. Key cell-cycle regulators, such as cyclins, CKIs, securin, and mitotic cyclins, are selectively broken down by the ubiquitin-proteasome system (UPS) to guarantee appropriate transitions, especially the G1-S transition and mitotic exit^[62, 69, 82]. The time and accuracy of DNA replication, chromosomal segregation, and cell-cycle advancement are thus determined by the exact synchronization of phosphorylation and ubiquitination.

Cancer is directly caused by this system's dysregulation. Cancer cells multiply because of flaws in proliferation-inhibitory pathways and the disruption of negative feedback mechanisms, in contrast to normal cells, which only divide in response to suitable growth signals^[67]. Early genetic research showed that tumor suppressors that limit cell-cycle progression, like RB and p53, are often deleted or altered in malignancies^[4]. Additional changes pertain to the UPS components themselves. For example, increased degradation of the CKI p27 in cancer is caused by the E3 ligase component SKP2, which is frequently overexpressed in malignancies^[63, 80, 61].

Fig 4: Cyclin-dependent kinases (CDKs) become active only after binding with cyclins, forming cyclin-CDK complexes that drive DNA replication, cell growth, and gene transcription. Proper cell cycle control requires timely cyclin degradation through the ubiquitin-proteasome system (UPS). When ubiquitination is intact, cyclins are degraded, CDKs become inactive, and cell proliferation is regulated. However, defects in ubiquitination prevent cyclin degradation, allowing CDKs to remain continuously active, leading to uncontrolled cell growth and cancer development.


On the other hand, FBW7, another E3 ligase component that targets several oncogenic proteins, is often altered or deleted, which supports its function as a tumor suppressor [61]. Together, these results show that the UPS is essential for controlling the cell cycle and that its dysregulation—caused by aberrant ubiquitination or proteasomal degradation—promotes unchecked cell division and the emergence of cancer.

Role of ubiquitine proteasome pathway in p53 gene and cancer development


p53, widely known as the “guardian of the genome,” plays a central role in coordinating cellular responses such as DNA repair, cell-cycle arrest, senescence, and apoptosis [50]. p53-deficient animals exhibit a considerably increased sensitivity to spontaneous tumor formation, demonstrating the significance of p53 in tumor suppression [17]. In addition to eliminating its tumor-suppressive properties, mutations in p53 can result in gain-of-function and dominant-negative activities that actively encourage the development and spread of tumors [6, 30, 96]. Wild-type p53 is a highly unstable protein with a brief half-life of 5-20 minutes under normal, unstressed conditions. It is kept at low cellular levels by ongoing ubiquitin-mediated degradation [49, 27]. On the other hand, mutant p53 can cause oncogenic gain-of-function consequences since it is often stable and accumulates in cancer cells [6, 23].

In addition to its traditional functions in apoptosis and cell-cycle regulation, p53 also affects metabolism, stem-cell dynamics, differentiation, and aging, highlighting the need for strict control over its activation and stability [48, 92]. Numerous post-translational changes, such as phosphorylation, acetylation, methylation, neddylation, sumoylation, and ubiquitination, control protein stability, cellular localization, and transcriptional output. These modifications also affect the amount and activity of p53. In addition to its non-transcriptional roles, such as the direct control of mitochondrial apoptosis, which further contribute to tumor suppression, p53 is a transcription factor that either activates or represses a large number of target genes necessary for genome integrity [89, 92]. Following DNA damage, p53 quickly stabilizes, enabling strong activation of its target genes and stopping the growth of injured cells through senescence or apoptosis [33].

The ubiquitin-proteasome system, which regulates p53 turnover through dynamic and reversible ubiquitination, is essential to p53 regulation [89]. The stability, localization, and activity of p53 are all influenced differently by mono- and polyubiquitination. The finding that HPV E6 causes proteasomal degradation of p53 was the first indication of the importance of ubiquitin-mediated degradation in p53 regulation [21]. All things considered, ubiquitination offers a precise, adaptable method for regulating p53 activity and guaranteeing proper cellular reactions to stress [34, 60].

Figure 5: When DNA damage occurs, p53 becomes activated and initiates the cellular damage-response pathway. Activated p53 stimulates the expression of DNA repair enzymes. If the damaged DNA is successfully repaired, p53 permits the cell to resume division. However, if the damage is irreparable, p53 halts cell division and triggers programmed cell death, preventing the propagation of genetically unstable cells.

Fig 6: If p53 becomes damaged or mutated, it loses its ability to halt the cell cycle and repair DNA. As a result, cells with unrepaired DNA continue to divide. With ongoing cell division, additional genetic abnormalities accumulate, eventually leading to uncontrolled proliferation and cancer development.

The 90-kDa protein that MDM2, which is found on chromosome 12q13-14, encodes serves as the main negative regulator of p53 by binding its N-terminal transactivation domain, preventing transcriptional activity, and encouraging ubiquitin-mediated degradation via its RING-finger E3 ligase domain [5]. MDM2's structure includes a zinc-finger motif, a central acidic domain, a p53-binding region, and a C-terminal RING domain that is necessary for ubiquitination. MDM2 overexpression or amplification lowers p53 activity and promotes carcinogenesis; this is commonly seen in cancers such lung, breast, liver, and colorectal malignancies [57, 58]. Under basal settings, MDM2 and p53 form a crucial negative feedback loop that keeps p53 levels low; stress signals break this loop, stabilizing p53 [43].

Although MDMX lacks intrinsic E3 ligase activity, it heterodimerizes with MDM2 to enhance its stability and ubiquitination function, together forming the major complex responsible for p53 suppression [42, 84]. DNA damage triggers degradation of MDM2 and MDMX, thereby releasing p53 and enabling an appropriate cellular stress response [85, 88].

Role of Ubiquitine Proteasome Pathway in Apoptosis and Cancer Development

During development and tissue homeostasis, apoptosis—a controlled cell death program—is crucial for getting rid of injured or undesirable cells (Kerr *et al.*, 2000; Fuchs and Steller, 2011). Apoptosis dysregulation is linked to immunological, neurodegenerative, cancer, and developmental problems [35, 56]. Apoptosis is characterized by caspase-dependent cell death, which is carried out by caspases that are triggered from their dormant pro-caspase forms [18]. The intrinsic (mitochondrial) and extrinsic (death receptor-mediated) mechanisms control apoptosis. These pathways interact through molecules such as tBID, which facilitate apoptosis formation, cytochrome c release, mitochondrial outer membrane permeabilization (MOMP), and downstream caspase activation.

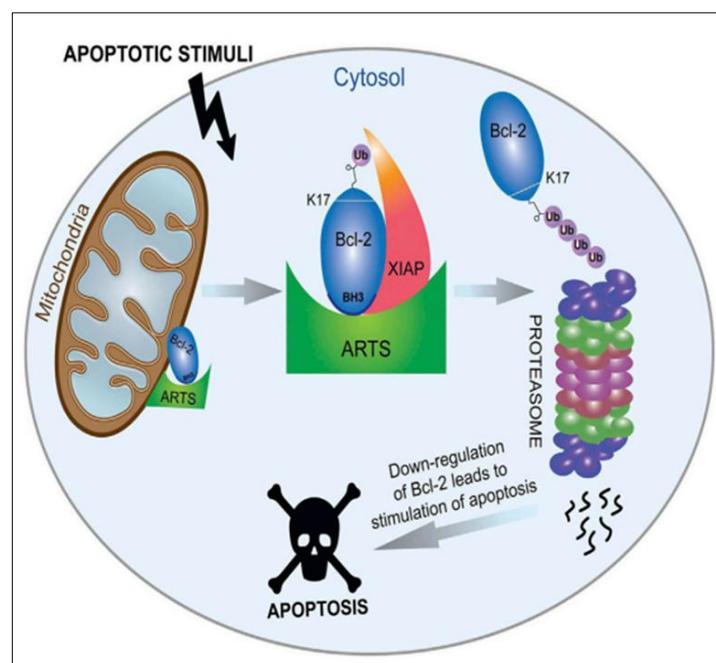
Inhibitors of apoptosis proteins (IAPs) like XIAP, which have E3 ligase activity and directly inhibit caspases, regulate caspase activity [16, 68, 72]. By interfering with these regulatory checkpoints, cancer cells frequently avoid apoptosis [13, 14].

Correlation Between Apoptosis and Ubiquitination:

- Increased ubiquitination is frequently seen in cells going through apoptosis, indicating that ubiquitination plays a regulatory function in programmed cell death.
- Elevated ubiquitin conjugates are seen to precede morphological apoptotic alterations in a variety of species, including:
- In *Manduca sexta*, intersegmental muscle (ISM) programmed cell death exhibits elevated polyubiquitin expression during muscle atrophy [75].
- Teniposide-treated murine lymphocytes [70].
- Schlosseri Botryllus* [58].
- γ -irradiated human cells [15].
- Apoptosis caused by thyroxine in the tail tips of *Rana catesbeiana* tadpoles [64].
- Mice lacking dystrophin [73].

Myoblasts treated with cisplatin without serum [37].

- While etoposide-induced apoptosis did not change ubiquitin transcription, proteasome inhibition in mouse


RVC cells increased ubiquitin transcription during apoptosis [86].

- Additionally, Ewing's sarcoma cells treated with radiation or proteasome inhibitors, as well as rat cerebellar external granule cells exposed to radiation or toxins, showed increased ubiquitin-protein conjugates [22, 83].

2.3.2 Role of Bcl-2 Family Proteins in the Intrinsic Pathway

The Bcl-2 family modulates mitochondrial apoptosis and comprises both pro- and anti-apoptotic proteins, which determine cellular sensitivity to apoptotic stimuli [12, 32, 81].

- Anti-apoptotic:** Bcl-2, Bcl-xL, Bcl-w, Mcl-1, A1, Bcl-B
- Pro-apoptotic:** BAX, BAK
- BH3-only pro-apoptotic:** Bim, Bad, tBID, Bmf, Bik, Noxa, Puma, Hrk

Figure 7: In response to apoptotic stimuli, ARTS is released from the mitochondria into the cytosol. ARTS binds to Bcl-2 and recruits XIAP, promoting the ubiquitination of Bcl-2 at lysine-17 (K17). The ubiquitinylated Bcl-2 is then targeted to the proteasome for degradation. Down-regulation of Bcl-2 removes its anti-apoptotic effect, thereby facilitating activation of the apoptotic pathway.

Bcl-2 itself is a key regulator that inhibits apoptosis and is often overexpressed in cancer [12]. During apoptosis, Bcl-2 is degraded via the UPS, mediated by XIAP, with ARTS acting as a scaffold to facilitate this process [19, 45].

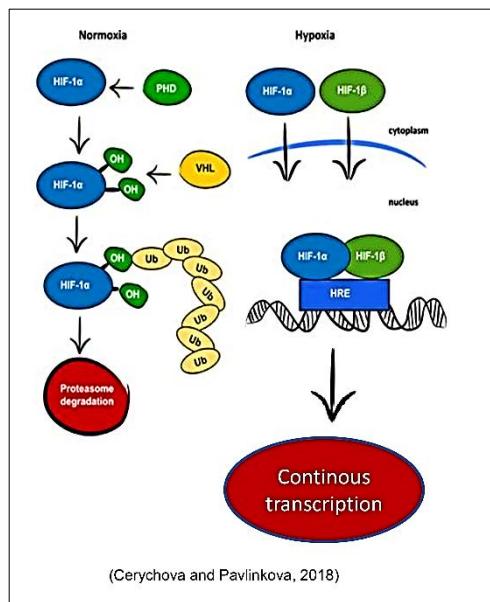
Regulation of Other Key Proteins by E3 Ligases

- Mcl-1:** Anti-apoptotic protein degraded via proteasome. E3 ligases include MULE/ARFBP1, TRIM17, Parkin, SCF $^{\alpha}$ -TrCP, and SCF $^{\alpha}$ FBW7, ensuring precise apoptotic control [46].
- BID and BAX:**
 - BID is cleaved to tBID, linking extrinsic and intrinsic pathways. tBID is ubiquitinated by ITCH/AIP4 [2].
 - Bax translocates to mitochondria to initiate MOMP and is tightly controlled by UPS. E3 ligases include IBRDC2 (specific to BAX) and Parkin [2, 53].
- IAPs and Antagonists**

- XIAP, cIAP1, cIAP2, ML-IAP, ILP2 inhibit caspases and possess E3 ligase activity through RING domains [68].
- ARTS antagonizes XIAP upon apoptotic stimuli, facilitating caspase activation and subsequent MOMP [19].

The UPS not only maintains apoptosis under physiological conditions but also contributes to cancer development when dysregulated. By modulating the degradation of key apoptotic regulators, the UPS enables cancer cells to evade apoptosis, promoting survival and proliferation [79].

2.4 Role of Ubiquitine Proteasome Pathway in HIF Alpha and Cancer Development


2.4.1 HIF and Oxygen Sensing

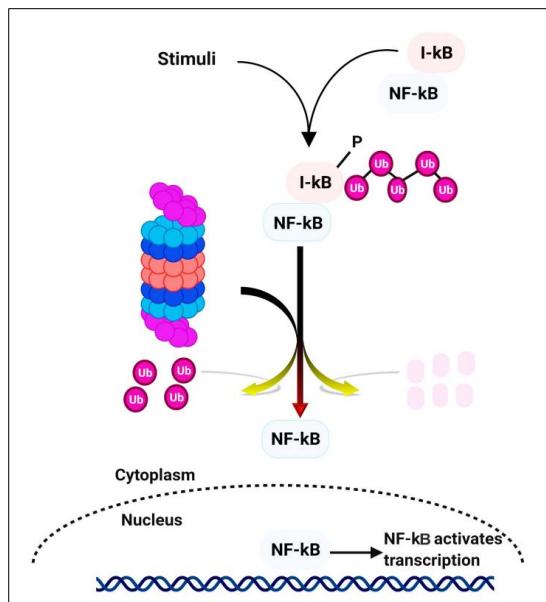
Through hypoxia-inducible factors (HIFs), which are master regulators of the cellular hypoxic response, oxygen tension controls genes related to angiogenesis, metabolism, and apoptosis [76, 77]. HIFs are heterodimers made up of a constitutive β -subunit (ARNT/HIF-1 β) and an oxygen-sensitive α -subunit (HIF-1 α , HIF-2 α , and HIF-3 α) [53]. Prolyl hydroxylases (PHDs) and factor-inhibiting HIF-1 (FIH-1) hydroxylate HIF- α under normoxia, which is then recognized by the von Hippel-Lindau (VHL) E3 ubiquitin ligase complex, ubiquitinated, and broken down by the 26S proteasome [28]. By inhibiting PHD and FIH-1 activity, hypoxia stabilizes HIF- α , which then translocates to the nucleus, dimerizes with HIF-1 β , and triggers the transcription of genes such as erythropoietin, VEGF, and glycolytic enzymes [51]. By directing PHDs for degradation and increasing HIF activity, E3 ligases like SIAH-1 and

SIAH-2 also control HIF stability during hypoxia [95].

2.4.2 Role of HIF in Cancer and Angiogenesis

Hypoxia brought on by rapid tumor growth forces a glycolytic metabolism (Warburg effect) and encourages an aggressive phenotype [47]. VEGF, PDGF-b, ANGPT2, SDF1, SCF, and TGF- α are among the proangiogenic factors that HIF-1 α upregulates. These factors promote endothelial cell survival, proliferation, and vascular permeability and attract circulating angiogenic cells (CACs) to the tumor microenvironment [7, 8]. Additionally, VEGF supports tumor survival by promoting antiapoptotic signals through BCL-2 and A1 [26]. Tumor angiogenesis, progression, and metastasis are all influenced by these pathways.

Fig 8: Regulation of HIF-1 α under normoxic and hypoxic conditions.


2.5 Role of Ubiquitine Proteasome Pathway in NF Kappa Beta and Cancer Development

2.5.1 NF- κ B and Cancer

NF- κ B is a widely expressed transcription factor made up of heterodimers, mainly p50 and p65. It was first identified as a B-cell nuclear factor binding the κ immunoglobulin enhancer (Sen and Baltimore, 1986). Inhibitory proteins (I κ Bs) sequester NF- κ B in the cytoplasm of resting cells, blocking nuclear translocation [90]. Extracellular stimuli, such as stress, cytokines, radiation, and oncogene signaling, cause I κ B kinases (IKK) to phosphorylate I κ B. This is followed by β TrCP-mediated ubiquitination and

proteasomal degradation, which releases NF- κ B to enter the nucleus [2, 44].

Numerous malignancies, including breast, lung, colon, prostate, myeloma, and leukemia, exhibit constitutive NF- κ B activation, which is linked to oncogene activity, increased IKK/SCF β -TrCP function, and chronic inflammation [24, 55]. Nuclear NF- κ B promotes tumor growth and progression by driving the transcription of genes related to cell survival, proliferation, inflammation, and apoptosis inhibition [1, 70]. NF- κ B-dependent oncogenesis is caused by changes in both kinase activity and ubiquitin-proteasome-mediated I κ B degradation [24].

Fig 9: Stimuli cause phosphorylation and ubiquitination of I-κB, leading to its proteasomal degradation. Once I-κB is removed, NF-κB is released and moves into the nucleus, where it activates transcription of target genes.

Conclusion

The ubiquitin-proteasome pathway (UPP) is a cornerstone of cellular homeostasis, regulating protein turnover with remarkable specificity and precision. By orchestrating the controlled degradation of key regulatory proteins—including cyclins, CDK inhibitors, tumor suppressors like p53, apoptotic mediators, HIF- α , and transcription factors such as NF-κB—the UPP ensures proper cell cycle progression, apoptosis, stress responses, and adaptation to environmental changes. Dysregulation of this pathway, whether through aberrant ubiquitination, overactive E3 ligases, or impaired proteasomal degradation, disrupts these tightly regulated processes, enabling uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis, and malignant transformation. Consequently, the UPP emerges not only as a pivotal driver of tumorigenesis but also as a promising therapeutic target, with proteasome inhibitors and E3 ligase modulators offering avenues for precise, mechanism-based cancer intervention. Understanding the nuanced interplay of ubiquitination and proteasomal degradation in normal and cancerous cells is therefore essential for developing effective strategies to prevent and treat malignancies.

References

1. Baeuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. *Cell*. 1988;53(2):211-217. DOI:10.1016/0092-8674(88)90382-0
2. Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. *Nature Immunology*. 2002;3(1):20-26. DOI:10.1038/ni0102-20
3. Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. *Nature Reviews Molecular Cell Biology*. 2007;8(2):149-160. DOI:10.1038/nrm2105
4. Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. *Seminars in Cancer Biology*. 2003;13(1):41-47. DOI:10.1016/S1044-579X(02)00098-6
5. Bose I, Ghosh B. The p53-MDM2 network: from oscillations to apoptosis. *Journal of Biosciences*. 2007;32(5):991-997.
6. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. *Nature Reviews Cancer*. 2009;9(10):701-713. DOI:10.1038/nrc2693
7. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. *Nature Reviews Drug Discovery*. 2011;10(6):417-427.
8. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. *Nature Medicine*. 2004;10(8):858-864. DOI:10.1038/nm1075
9. Ciechanover A, Iwai K. The ubiquitin system: from basic mechanisms to the patient bed. *IUBMB Life*. 2004;56(4):193-201.
10. Ciechanover A, Heller H, Elias S, Haas AL, Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. *Proceedings of the National Academy of Sciences of the United States of America*. 1980;77(3):1365-1368.
11. Ciechanover A, Hod Y, Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. 1978. *Biochemical and Biophysical Research Communications*. 2012;425(3):565-570. DOI:10.1016/j.bbrc.2012.08.025
12. Cory S, Huang D, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. *Oncogene*. 2003;22(53):8590-8607.
13. Cotter TG. Apoptosis and cancer: the genesis of a research field. *Nature Reviews Cancer*. 2009;9(7):501-507.
14. Danial NN, Korsmeyer SJ. Cell death: critical control points. *Cell*. 2004;116(2):205-219.
15. Delic J, Morange M, Magdelenat H. Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis. *Molecular and Cellular Biology*. 1993;13(8):4875-4883.

16. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. *Genes & Development*. 1999;13(3):239-252.
17. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. *Nature*. 1992;356(6366):215-221.
18. Donepudi M, Grütter MG. Structure and zymogen activation of caspases. *Biophysical Chemistry*. 2002;101-102:145-153.
19. Edison N, Curtz Y, Paland N, Mamriev D, Chorubczyk N, Haviv-Reingewertz T, et al. Degradation of Bcl-2 by XIAP and ARTS promotes apoptosis. *Cell Reports*. 2017;21(2):442-454. DOI:10.1016/j.celrep.2017.09.052
20. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. *Cell*. 1983;33(2):389-396.
21. Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. *The EMBO Journal*. 1997;16(7):1519-1530.
22. Ferrer I, Pozas E, Planas AM. Ubiquitination of apoptotic cells in the developing cerebellum of the rat following ionizing radiation or methylazoxymethanol injection. *Acta Neuropathologica*. 1997;93(4):402-407.
23. Frum RA, Grossman SR. Mechanisms of mutant p53 stabilization in cancer. In: Deb S, Deb SP, editors. *Mutant p53 and MDM2 in Cancer*. Dordrecht: Springer; 2014. p. 187-197.
24. Fuchs SY. The role of the ubiquitin-proteasome pathway in oncogenic signaling. *Cancer Biology & Therapy*. 2002;1(4):336-340.
25. Fuchs Y, Steller H. Programmed cell death in animal development and disease. *Cell*. 2011;147(4):742-758.
26. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. *The Journal of Biological Chemistry*. 1998;273(21):13313-13316. DOI:10.1074/jbc.273.21.13313
27. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. *Genes & Development*. 1998;12(19):2973-2983.
28. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. *Physiological Reviews*. 2002;82(2):373-428.
29. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. *Cell*. 1998;94(5):615-623.
30. Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. *The Journal of Pathology*. 2011;223(2):116-126.
31. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. *Nature*. 1997;386(6624):463-471.
32. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. *Genes & Development*. 1999;13(15):1899-1911.
33. Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. *International Journal of Biological Sciences*. 2012;8(5):672-684.
34. Hershko A, Ciechanover A. The ubiquitin system. *Annual Review of Biochemistry*. 1998;67:425-479.
35. Hershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. *Proceedings of the National Academy of Sciences of the United States of America*. 1979;76(7):3107-3110. DOI:10.1073/pnas.76.7.3107
36. Hershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. *Proceedings of the National Academy of Sciences of the United States of America*. 1979;76(7):3107-3110.
37. Hicke L. Protein regulation by monoubiquitin. *Nature Reviews Molecular Cell Biology*. 2001;2(3):195-201.
38. Hochegger H, Takeda S, Hunt T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? *Nature Reviews Molecular Cell Biology*. 2008;9(11):910-916.
39. Hochstrasser M. Ubiquitin-dependent protein degradation. *Annual Review of Genetics*. 1996;30:405-439. DOI:10.1146/annurev.genet.30.1.405
40. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. *Nature*. 2009;458(7237):438-444. DOI:10.1038/nature07960
41. Hoppe T. Multiubiquitylation by E4 enzymes: ‘one size’ doesn’t fit all. *Trends in Biochemical Sciences*. 2005;30(4):183-187.
42. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindström MS, et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. *Cancer Cell*. 2007;12(4):355-366.
43. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. *Nature*. 1995;378(6553):206-208.
44. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. *Annual Review of Immunology*. 2000;18:621-663.
45. Kassi E, Sourlingas TG, Spiliotaki M, Papoutsi Z, Pratsinis H, Aligiannis N, et al. Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells. *Cancer Investigation*. 2009;27(7):723-733.
46. Kim JH, Park KC, Chung SS, Bang O, Chung CH. Deubiquitinating enzymes as cellular regulators. *The Journal of Biochemistry*. 2003;134(1):9-18.
47. Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. *Cancer Research*. 2006;66(18):8927-8930.
48. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. *Nature Reviews Molecular Cell Biology*. 2015;16(7):393-405.
49. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. *Nature*. 1997;387(6630):299-303.
50. Lane DP. Cancer. p53, guardian of the genome. *Nature*. 1992;358(6381):15-16. DOI:10.1038/358015a0
51. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel

mechanism for HIF-1-mediated vascular endothelial growth factor expression. *Molecular and Cellular Biology*. 2001;21(12):3995-4004.

52. Lauzon RJ, Patton CW, Weissman IL. A morphological and immunohistochemical study of programmed cell death in *Botryllus schlosseri* (Tunicata, Asciidae). *Cell and Tissue Research*. 1993;272(1):115-127.

53. Lisy K, Peet DJ. Turn me on: regulating HIF transcriptional activity. *Cell Death & Differentiation*. 2008;15(4):642-649.

54. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. *Nature Reviews Cancer*. 2009;9(3):153-166.

55. Mayo MW, Baldwin AS. The transcription factor NF- κ B: control of oncogenesis and cancer therapy resistance. *Biochimica et Biophysica Acta*. 2000;1470(2):M55-M62.

56. Meier P, Finch A, Evan G. Apoptosis in development. *Nature*. 2000;407(6805):796-801. DOI:10.1038/35037734

57. Mendoza M, Mandani G, Momand J. The MDM2 gene family. *Biomolecular Concepts*. 2014;5(1):9-19.

58. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. *Nucleic Acids Research*. 1998;26(15):3453-3459.

59. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. *Cell*. 1992;69(7):1237-1245.

60. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. *Science*. 2007;315(5809):201-205.

61. Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. *Seminars in Cell & Developmental Biology*. 2005;16(3):323-333.

62. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. *Nature Reviews Cancer*. 2006;6(5):369-381.

63. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. *Science*. 1995;269(5224):682-685.

64. Phillips ME, Platt JE. The use of ubiquitin as a marker of thyroxine-induced apoptosis in cultured *Rana catesbeiana* tail tips. *General and Comparative Endocrinology*. 1994;95(3):409-415.

65. Peters JM, Franke WW, Kleinschmidt JA. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. *Journal of Biological Chemistry*. 1994;269(10):7709-7718.

66. Pickart CM. Mechanisms underlying ubiquitination. *Annual Review of Biochemistry*. 2001;70:503-533.

67. Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. *Nature Reviews Molecular Cell Biology*. 2004;5(3):177-187.

68. Rajalingam K, Dikic I. Inhibitors of apoptosis catch ubiquitin. *Biochemical Journal*. 2009;417(1):e1-e3.

69. Reed SI. The ubiquitin-proteasome pathway in cell cycle control. In: Kaldis P, editor. *Cell Cycle Regulation*. Berlin, Heidelberg: Springer; 2006. p. 147-181.

70. Roy C, Brown DL, Little JE, Valentine BK, Walker PR, Sikorska M, et al. The topoisomerase II inhibitor teniposide (VM-26) induces apoptosis in unstimulated mature murine lymphocytes. *Experimental Cell Research*. 1992;200(2):416-424.

71. Roy P, Sarkar UA, Basak S. The NF- κ B activating pathways in multiple myeloma. *Biomedicines*. 2018;6(2):59.

72. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. *Nature Reviews Molecular Cell Biology*. 2002;3(6):401-410.

73. Sandri M, Carraro U, Podhorska-Okolow M, Rizzi C, Arslan P, Monti D, et al. Apoptosis, DNA damage and ubiquitin expression in normal and mdx muscle fibers after exercise. *FEBS Letters*. 1995;373(3):291-295.

74. Sandri M, Podhorska-Okolow M, Geromel V, Rizzi C, Arslan P, Franceschi C, et al. Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice. *Journal of Neuropathology & Experimental Neurology*. 1997;56(1):45-57.

75. Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C. Activation of polyubiquitin gene expression during developmentally programmed cell death. *Neuron*. 1990;5(4):411-419.

76. Semenza GL. Hypoxia-inducible factor 1: master regulator of O₂ homeostasis. *Current Opinion in Genetics & Development*. 1998;8(5):588-594.

77. Semenza GL. Regulation of mammalian O₂ homeostasis by hypoxia-inducible factor 1. *Annual Review of Cell and Developmental Biology*. 1999;15:551-578.

78. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. *Nature Reviews Cancer*. 2018;18(2):69-88. DOI:10.1038/nrc.2017.105

79. Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. *Cell Biology International*. 2020;44(3):721-734.

80. Shirane M, Harumiya Y, Ishida N, Hirai A, Miyamoto C, Hatakeyama S, et al. Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. *The Journal of Biological Chemistry*. 1999;274(20):13886-13893. DOI:10.1074/jbc.274.20.13886

81. Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. *Archives of Toxicology*. 2015;89(3):289-317.

82. Skaar JR, Pagano M. Control of cell growth by the SCF and APC/C ubiquitin ligases. *Current Opinion in Cell Biology*. 2009;21(6):816-824.

83. Soldatenkov VA, Dritschilo A. Apoptosis of Ewing's sarcoma cells is accompanied by accumulation of ubiquitinated proteins. *Cancer Research*. 1997;57(18):3881-3885.

84. Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP, et al. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. *EMBO Reports*. 2001;2(11):1029-1034.

85. Stommel JM, Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. *The EMBO Journal*. 2004;23(7):1547-1556.

86. Tanimoto Y, Onishi Y, Hashimoto S, Kizaki H. Peptidyl aldehyde inhibitors of proteasome induce

apoptosis rapidly in mouse lymphoma RVC cells. *The Journal of Biochemistry*. 1997;121(3):542-549.

87. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. *The EMBO Journal*. 2000;19(1):94-102.

88. Tollini LA, Jin A, Park J, Zhang Y. Regulation of p53 by Mdm2 E3 ligase function is dispensable in embryogenesis and development, but essential in response to DNA damage. *Cancer Cell*. 2014;26(2):235-247.

89. Tsvetkov P, Reuven N, Shaul Y. Ubiquitin-independent p53 proteasomal degradation. *Cell Death & Differentiation*. 2010;17(1):103-108.

90. Ueda Y, Richmond A. NF-κB activation in melanoma. *Pigment Cell Research*. 2006;19(2):112-124.

91. Vijay-Kumar S, Bugg CE, Wilkinson KD, Cook WJ. Three-dimensional structure of ubiquitin at 2.8 Å resolution. *Proceedings of the National Academy of Sciences of the United States of America*. 1985;82(11):3582-3585.

92. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. *Cell*. 2009;137(3):413-431.

93. Weissman AM. Themes and variations on ubiquitylation. *Nature Reviews Molecular Cell Biology*. 2001;2(3):169-178.

94. Wilkinson KD, Audhya TK. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. *Journal of Biological Chemistry*. 1981;256(17):9235-9241.

95. Xiao W. The hypoxia signaling pathway and hypoxic adaptation in fishes. *Science China Life Sciences*. 2015;58(2):148-155.

96. Yamamoto S, Iwakuma T. Regulators of oncogenic mutant TP53 gain of function. *Cancers*. 2018;11(1):4.