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Abstract

Hydroxamic acids are a group of weak organic acids having the general formula RC(=O)N(R")OH,
shows a wide spectrum of activities in analytical, agricultural, biological and medicinal fields. The
logarithmic n-octanol/water partition coefficient (logPow) is an important property for pharmacology,
toxicology and medicinal chemistry. Some commonly available software including XLOGP, KowWin,
CLOGP, ALOGPS and miLOGP were used to estimate the log Pow values of the hydroxamic acids.
Moderate correlation were obtained between the shake flask derived logPow and the software
computed logPow, with squared correlation coefficients (R2) ranging from 0.4022 to 0.5688.
Quantitative structure-property relationship (QSPR) for the lipophilic behaviour, logPomw), of N-
arylhydroxamic acid (HAs) is analysed using the molecular descriptors by partial least square (PLS)
regression. The cross-validation Q2 cum values for the optimal QSPR model of HAs is above 0.860
(remarkably higher than 0.500), indicating good predictive-abilities for logPow values of HAs. The
resulting QSPR model shows that logPow values of HAs are mainly governed by molar volume (Vx),
excess molar refraction (XRM), energy GAP (Exomo- ELumo), hydrogen bond parameters (o, ) and
chlorine atoms attached in upper or/and lower phenyl rings (lci).

Keywords: logPow, PM6, QSPR, Hydroxamic acid, PLS

Introduction

The logarithmic n-octanol/water partition coefficient (logPow) is widely used to represent
molecular lipophilicity. A lipophilicity parameter is a useful tool in the field of quantitative
structure- activity relationships (QSARSs) for several biological effects, because lipophilicity
affects absorption, transmembrane transport, bioavilability hydrophobic drug receptor
interaction, metabolism, pharmacological activity as well as toxicity of molecule 2
Lipophilicity of chemicals is important both for predicting pharmacokinetics and
pharmcodynamics of drugs and toxicants Bl. LogPow is also an important parameter in
studying their environmental fate, e.g. bioaccumulation in fish or absorption on soil and
sediments. Therefore, accurate logPow Vvalues are important for the prediction of biological
or environmental properties of compound.

The hydroxamic acid functional group, —C(=0) N-ROH, is a key structural constitutent of
many biomolecules, some of which are naturally occurring ™ and others, such as the
peroxidose, matrix metalloproteinase and urease inhibitors 1 are of synthetic origin.
Hydroxamic acids represent a wide spectrum of bioactive compounds that have hypotensive
[l anticancer 812, antitumor (13151 antimalarial [6-21, antituberculosis and antifungal as key
functional of potential chemotherapeutics targeting cardiovascular, HIV and Alzheimer’s
diseases 12122, Quantitative structure-property relationship (QSPR) has been demonstrated to
be an effective computational tool in understanding the interrelation between the structure of
molecule and their properties 2261, Therefore, the objective of the present investigation to
develop QSPR model for logPonw of the hydroxamic acidsbased on molecular descriptors by
partial least square (PLS) regression. The commonly available compute programmes:
XLOGP, KowWin, CLOGP, ALOGPS and MilogP were used to estimate the logP data for
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hydroxamic acids. The results obtained are computed with
experimental logPow of hydroxamic acids.

Materials and Methods

Materials

The experimental results of the logarithmic n-octanol/water
partition coefficient (logPow) of hydroxamic acids are taken
from literature 7. 28land are summarized in (Table 1).

Lipophilicity calculations

A number of different computer programmes have been
recently developed for the estimation of lipophilocity of
compounds based on their structure. In the study, five
commonly available computer programmes based on
different calculation methods for computing logP have been
compared.

The validity of these programmes was evaluated by how
well the calculated log P values agreed with this
experimentally determined logPow values for hydroxamic
acids.

https://www.chemistryjournals.net

The SMILES (Simplified Molecular Input Line Entry
System) notation created by the structure drawing programs
Cambridge softs chemdraw pro was used as chemical
structure for all programs commonly available computer
programs were used to estimate logPow of Hydroxamic
Acids are as XLOGP (based on atom contribution) 29,
KowWin (based on atom/fragment contribution) % and
CLOGP (based on fragmental contributions) [l
ALOGPS2.2 (based on atom type electrotopological state,
indices and neutral networking modeling %1, and MilogP
(based on group contribution) (61, LogP data obtained with
five software packages will listed in Table 1.

Molecular modeling

The PM6 Hamiltonian method of MOPAC 2009 contained
in the Ampac software version 9 71 was used to compute
semiemperical quantum chemical descriptors. Bio-Loom
program of Biobyte co-operation (8 was used to compute
excess molar refraction, XRM. The data are listed on Table
2.

Table 1: Lipophilicity Parameters of Hydroxamic Acids with the logP values obtained by different computer programs

Serial No. Hydroxamic acid logP Exp XLOGP KowWin CLOGP ALOGPS MilogP

1 N-phenylbenzo- 2.50 1.87 1.94 2.32 1.78 2.76

2 N-phenyl-4-chlorobenzo- 2.52 3.08 2.58 3.23 2.70 3.43

3 N-phenyl-4-methoxybenzo- 2.54 242 2.02 2.52 1.89 2.81

4 N-phenyl-4-nitrobenzo- 2.52 2.28 1.75 2.48 1.82 2.71

5 N-phenylcinnamo- 2.54 2.88 2.32 3.29 2.36 3.39

6 N-phenylcinnamo- 2.46 2.81 2.48 2.82 2.58 3.16

7 N-p-tolylbenzo- 2.47 2.81 2.48 2.82 2.58 3.20

8 N-p-tolyl-2-furo- 241 2.21 1.61 2.00 1.90 2.46

9 N-m-chlorophenylbenzo- 2.73 3.08 2.58 3.29 2.73 3.39

10 N-p-chlorophenylbenzo- 2.47 3.08 2.58 3.29 2.71 3.43

11 N-p-chlorophenyl-2-chlorobenzo- 2.71 3.08 2.58 3.23 2.69 3.39

12 N-o-tolyl-4-chlorobenzo- 2.79 3.44 3.13 3.73 3.01 3.83

13 N-phenyl-4-ethoxybenzo- 2.69 2.79 2.51 3.05 241 3.19

14 N-o-tolyl-4-ethoxybenzo- 2.76 3.15 3.06 3.55 2.89 3.59

15 N-p-tolyl-4-ethoxybenzo- 2.74 3.15 3.06 3.55 2.93 3.64

Table 2: Molecular Descriptors of Hydroxamic Acids
Serial No.| Ehomo (eV) |Elumo (eV) | Elumo-Ehomo (eV) | Dm (Debye) | aa fa_|Vxa (cm?*-mol™")| XRM (cm*-mol™?)| ICI

1 -8.7084 -0.6558 8.0526 2.645 0.56 | 1.35 172.20 1.010 0
2 -8.8430 -0.9426 7.9004 3.020 0.67 | 1.70 200.65 1.090 1
3 -8.5895 -0.5119 8.0776 4.481 0.76 | 1.99 225.00 0.960 0
4 -9.1433 -1.8483 7.2950 6.413 0.85 | 2.36 255.32 1.040 0
5 -8.6581 -0.9158 7.7423 3.533 0.78 | 2.03 228.88 1.430 0
6 -8.4938 -0.6125 7.8813 3.887 0.66 | 1.69 198.64 1.010 0
7 -8.4922 -0.5932 7.8990 2.697 0.72 | 1.85 211.73 1.010 0
8 -8.5061 -0.6591 7.8470 2.793 0.64 | 1.24 160.46 0.810 0
9 -8.9460 -0.8331 8.1129 4.270 0.64 | 1.94 225.99 1.090 1
10 -8.7915 -0.8552 7.9363 3.740 054 | 1.38 174.02 1.090 1
11 -8.7044 -0.8843 7.8201 3.500 1.56 | 2.40 263.18 1.090 1
12 -8.6501 -0.8554 7.7947 4.148 1.67 | 2.53 278.11 1.090 1
13 -8.5552 -0.4680 8.0872 4.696 1.72 | 2.55 273.37 0.960 0
14 -8.3674 -0.3810 7.9864 5.409 1.71 | 2.69 288.45 0.960 0
15 -8.3317 -0.4824 7.8493 4.751 1.77 | 2.70 288.57 0.960 0

Statistical methods

QSPR models were developed using PLS regression as
implemented in Simca (SIMCA-Version 11.0, Umetric AB
and Ersoft AB) software, the condition for the computation
were based on the default option of the software. The
criterion used to determine the model dimensional-the
number of significant PLS component is cross validation
(Cv). The obtained QSPR model is considered to have good
prediction ability when the cumulative cross validated

regression coefficient (Q?) for the extracted component
Q%cum, is large than 0.5. Model adequacy was mainly
measured as the number of PLS principal component (A),
Q?cum, their correlation coefficient between observed
values and filled values (R).

Results and Discussion
Correlation between experimental logew and computated
log P values
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The correlation between the log Po/w and obtained by
computation were summaries in Table 2. The
experimentally determined log Pow values correlate with the
lipophilicity data (logP) computed using software XLOGP
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(r>=0.4190), KowWin (r?=0.5563), CLOGP (r?=0.5688),
ALOGPS (r?=0.4022) and MilogP (r?=0.5202).

The cross-validation (g?) value of experimental logP versus
computational logP are shown in figure show that the
programs used in present study did not give reasonable data
for this set of compound (g<0.5)

Table 3: Linear relationships between experimental logP and calculated logP of hydroxamic acids

a b R? sd F n
XLOGP 2.0485 0.1933 0.4190 0.1018 9.373 15
KowWin 2.0788 0.2096 0.5563 0.0890 16.296 15
ClogP 2.0087 0.1935 0.5688 0.0877 17.151 15
ALOGPS 2.1154 0.1930 0.4022 0.1032 8.745 15
MilogP 1.8096 0.2429 0.5202 0.0925 14.094 15
0.6
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Fig 1: The cross-validation (g?) logPow versus computed logP values of 15 Hydroxamic Acids
2DQSPR analysis Model and multiplied by the number of terms in the model.

To develop the 2DQSPR, several descriptors of steric,
electronic and hydrogen bond parameters were used to
characterize the compounds. Molar volume and excess
molar refraction are chosen to characterize the steric
component. Electronic was represented by energy of highest
occupied molecular orbital (Enomo), energy of lowest
unoccupied molecular orbital (ELumo), energy GAP (ELumo -
Enomo) and dipole moment (Dm). Hydrogen bond donor
acidity, a and acceptor basicity, B as hydrogen bond
parameter and variable indicator lc;, when chlorine atom in
hydroxamic acid moiety I=1 and absent I¢=0.

PLS analysis

In a PLS model, variable importance in the projection (VIP)
is a parameter that shows that the importance of variable.
According to the manual of simca-p (version 11), VIP is the
sum and all model dimensions of the contribution of
variable influences (VIN) for given PLS dimension (a) and a
given x term (k), VIN? is computed form the squared PLS
weight of that x term multiplied by the parent explained the
sum of squares (SS) by that PLS dimension. VIP value is
calculated from the accumulated value and all PLS
dimension, divide by the total percent explained SS by the
PLS,

VIP =% (VIP)i )

The terms with values of VIP are the most relvant for
explaining depended variable.

To obtain an optimal model the following PLS analysis
procedure are adopted. At first, a PLS model with all the
predictor variables was calculated. Then the variable with
the lowest VIP value was eliminated and a new PLS
regression was performed, leading to a new PLS model.
This procedure was repeated till only main predictor
variables were recommended the optimal PLS model was
selected with respected to the statistics Q%um, the root mean
square error of calibration (RMSEC) and the root mean
square of prediction (RMSEP).

PLS analysis was initially applied to the complete data set of
15 compounds and 9 descriptors. The preliminary analysis
yielded a model which accounts for 93.6% of the variation
in logPow (r? =0.936) at a predictability level of 73.0% (g?
=0.730). It was improved by removing that parameters
which did not make significant contributions to logPow
(Eromo, ELumo and Dmy.

Analytical QSPR equation thus obtained is as follow,
logPow = 3.160x107 (Vx) + 3.140 x 107 (a) + 2.890x10!

(B) +3.132 X102 (Ig)) + 2.531 x 10 (Enomo-ELumo)
+5.354 10" (XRM) + 20.131 3)
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was selected for the test set, the remaining compounds were
used as a training set. The test and training sets comprised 5
and 10 compounds, respectively and indicated in Table 4
(Model I1). The model fitting for model | and model Il are
listed in Table 5.

To establish the predictive power of a model, one needs to
divide the available data set into the training and test sets. In
general, training set should contain 60-80% of the full data.
For assigning compounds to training and test sets,
compounds were ordered by logPow values, and every third

Table 4: Calculated logP ow of N-aryhydroxamic acids by models I and 11

logPomw
S. No. . Model 11 .
Model | Residue Training set Teost set Residue
1. 2.449 0.051 2.464 0.036
2. 2,571 -0.051 - 2.545 -0.025
3. 2.563 -0.023 2.557 -0.017
4. 2.503 0.017 2.528 -0.008
5. 2.541 -0.001 - 2.589 -0.049
6. 2.478 -0.018 2.491 -0.031
7. 2.510 -0.040 - 2.519 -0.049
8. 2.391 0.019 2.398 0.012
9. 2.646 0.084 - 2.604 0.126
10. 2.518 -0.028 2.496 -0.006
11. 2.742 -0.031 2.713 -0.003
12. 2.770 0.020 - 2.740 0.050
13. 2.730 -0.040 2.723 -0.033
14. 2.737 0.022 2.730 0.030
15. 2.721 0.019 2.720 0.020
Table 5: Model fitting for models I and 11
Models Nt A Rg((adj)(cum) R%/(adj)(cum) Q%um RSMEE Nt RSMEP
| 15 1 0.466 0.829 0.791
2 0.664 0.913 0.867 0.041
1 10 1 0.476 0.921 0.854
2 0.667 0.965 0.884 0.027 5 0.069
N' = No. of compounds in training set and N*= No. of compounds in test set.

In model I, six predictor variables involved which are
condensed into two PLS components. The VIP values of

Vx, a and B are larger than 1, indicating that these three

descriptors are more significant than lci, Evomo-ELumo and
XMR.

Table 6: The VIPs and PLS weight (W* [1] and (W* [2]) for the molecular descriptors including in model |

Model |
Variables VIP W= [1] W* [2]
VX 1.333 0.556 0.016
o 1.301 0.552 -0.068
B 1.295 0.570 -0.004
lci 0.713 0.040 0.117
ELumo-EHomo 0.575 0.115 0.710
XRM 0.124 0.216 0.723

Table 7: The VIPs and PLS weight (W* [1] and (W* [2]) for the molecular descriptors including in model |1

Model 11
Variables VIP W= [1] W= [2]
o 1.430 0.597 0.244
VX 1.350 0.563 -0.094
B 1.333 0.555 -0.134
Ici 0.480 0.100 0.806
ELumo-EHomo 0.276 0.046 0.490
XRM 0.225 0.084 0.208
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Fig 2: Coefficent plot for PLS model 11 derives from 10 hydroxamic acids and 6 descriptors based on the 2" component.

The first PLS component is mainly related to Vx, a and f.
Increasing Vx, a and B values of hydroxamic acids leads to
increase in logPow values

The second PLS component is loaded primarily on Ig,
Enomo-ELumo and XMR. As indicated by pseudo-regression
coefficient, increasing value of lci, Enomo-ELumo and XMR
lead to increase in logPow values of hydroxamic acids. The
VIPs and PLS weight of model | and model Il are presented
in Table 6 and Table 7, respectively.

Figure 2 is the coefficient plot of the PLS model II. This

plot identifies the parameters that contributed most to
activity (as reflected by the length of the bar), and the nature
of the correlation (direct = positive coefficient or inverse =
negative coefficient). Two PLS components were selected in
model I1. The first PLS component is mainly related to the
descriptors Vx, a and B for which the W* [1] value in larger
0.550. The second component is loaded primarily on Igj,
EHOMO'ELUMO and XMR. Figure 3 and 4 shows the plOt of
prediced logPow and obseved logPow of model | and Model
I, respectively.
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Fig 3: Plot of predicted logPow versus logPow observed values of hydroxamic acids by model 1.
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Fig 4: Plot of predicted logPow versus logPow observed values of hydroxamic Acids by model I1.

Conclusion

By partial least squares (PLS) regression, QSPR model
reported herein provide interesting insight in understanding
the steric, electronic, hydrogen bond parameters and
structural requirements of lipophilicity among these set of
compounds.

The cross validated QZ%um values of QSPR model of
hydroxamic acids is 0.861 (remarkably higher than 0.500),
indicating good predictive-abilities for logPow values.

The current studies indicates that increasing values of Vx, a,
B, Ici, Enomo-ELumo and XMR leads to increase the
lipophilic characters of hydroxamic acids.
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