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Abstract 
Hydroxamic acids are a group of weak organic acids having the general formula RC(=O)N(R’)OH, 
shows a wide spectrum of activities in analytical, agricultural, biological and medicinal fields. The 
logarithmic n-octanol/water partition coefficient (logPO/W) is an important property for pharmacology, 
toxicology and medicinal chemistry. Some commonly available software including XLOGP, KowWin, 
CLOGP, ALOGPS and miLOGP were used to estimate the log PO/W values of the hydroxamic acids. 
Moderate correlation were obtained between the shake flask derived logPO/W and the software 
computed logPO/W, with squared correlation coefficients (R2) ranging from 0.4022 to 0.5688. 
Quantitative structure-property relationship (QSPR) for the lipophilic behaviour, logP(O/W), of N-
arylhydroxamic acid (HAs) is analysed using the molecular descriptors by partial least square (PLS) 
regression. The cross-validation Q2 cum values for the optimal QSPR model of HAs is above 0.860 
(remarkably higher than 0.500), indicating good predictive-abilities for logPO/W values of HAs. The 
resulting QSPR model shows that logPO/W values of HAs are mainly governed by molar volume (Vx), 
excess molar refraction (XRM), energy GAP (EHOMO- ELUMO), hydrogen bond parameters (α, β) and 
chlorine atoms attached in upper or/and lower phenyl rings (ICl). 
 
Keywords: logPO/W, PM6, QSPR, Hydroxamic acid, PLS 
 
Introduction 
The logarithmic n-octanol/water partition coefficient (logPO/W) is widely used to represent 
molecular lipophilicity. A lipophilicity parameter is a useful tool in the field of quantitative 
structure- activity relationships (QSARs) for several biological effects, because lipophilicity 
affects absorption, transmembrane transport, bioavilability hydrophobic drug receptor 
interaction, metabolism, pharmacological activity as well as toxicity of molecule [1,2] 
Lipophilicity of chemicals is important both for predicting pharmacokinetics and 
pharmcodynamics of drugs and toxicants [3]. LogPO/W is also an important parameter in 
studying their environmental fate, e.g. bioaccumulation in fish or absorption on soil and 
sediments. Therefore, accurate logPO/W values are important for the prediction of biological 
or environmental properties of compound.  
The hydroxamic acid functional group, −C(=O) N⋅ROH, is a key structural constitutent of 
many biomolecules, some of which are naturally occurring [4] and others, such as the 
peroxidose, matrix metalloproteinase and urease inhibitors [5,6] are of synthetic origin. 
Hydroxamic acids represent a wide spectrum of bioactive compounds that have hypotensive 
[7], anticancer [8-12], antitumor [13-15], antimalarial [16-20], antituberculosis and antifungal as key 
functional of potential chemotherapeutics targeting cardiovascular, HIV and Alzheimer’s 
diseases [21,22]. Quantitative structure-property relationship (QSPR) has been demonstrated to 
be an effective computational tool in understanding the interrelation between the structure of 
molecule and their properties [23-26]. Therefore, the objective of the present investigation to 
develop QSPR model for logPO/W of the hydroxamic acidsbased on molecular descriptors by 
partial least square (PLS) regression. The commonly available compute programmes: 
XLOGP, KowWin, CLOGP, ALOGPS and MilogP were used to estimate the logP data for 
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hydroxamic acids. The results obtained are computed with 
experimental logPO/W of hydroxamic acids. 
 

Materials and Methods 
Materials 
The experimental results of the logarithmic n-octanol/water 
partition coefficient (logPO/W) of hydroxamic acids are taken 
from literature [27, 28] and are summarized in (Table 1).  
 
Lipophilicity calculations 
A number of different computer programmes have been 
recently developed for the estimation of lipophilocity of 
compounds based on their structure. In the study, five 
commonly available computer programmes based on 
different calculation methods for computing logP have been 
compared. 
The validity of these programmes was evaluated by how 
well the calculated log P values agreed with this 
experimentally determined logPO/W values for hydroxamic 
acids.  

The SMILES (Simplified Molecular Input Line Entry 
System) notation created by the structure drawing programs 
Cambridge softs chemdraw pro was used as chemical 
structure for all programs commonly available computer 
programs were used to estimate logPO/W of Hydroxamic 
Acids are as XLOGP (based on atom contribution) [29], 
KowWin (based on atom/fragment contribution) [30] and 
CLOGP (based on fragmental contributions) [31], 
ALOGPS2.2 (based on atom type electrotopological state, 
indices and neutral networking modeling [32-35], and MilogP 
(based on group contribution) [36]. LogP data obtained with 
five software packages will listed in Table 1. 
 
Molecular modeling 
The PM6 Hamiltonian method of MOPAC 2009 contained 
in the Ampac software version 9 [37] was used to compute 
semiemperical quantum chemical descriptors. Bio-Loom 
program of Biobyte co-operation [38] was used to compute 
excess molar refraction, XRM. The data are listed on Table 
2. 

 
Table 1: Lipophilicity Parameters of Hydroxamic Acids with the logP values obtained by different computer programs 

 

Serial No. Hydroxamic acid logP Exp XLOGP KowWin CLOGP ALOGPS MilogP 
1 N-phenylbenzo- 2.50 1.87 1.94 2.32 1.78 2.76 
2 N-phenyl-4-chlorobenzo- 2.52 3.08 2.58 3.23 2.70 3.43 
3 N-phenyl-4-methoxybenzo- 2.54 2.42 2.02 2.52 1.89 2.81 
4 N-phenyl-4-nitrobenzo- 2.52 2.28 1.75 2.48 1.82 2.71 
5 N-phenylcinnamo- 2.54 2.88 2.32 3.29 2.36 3.39 
6 N-phenylcinnamo- 2.46 2.81 2.48 2.82 2.58 3.16 
7 N-p-tolylbenzo- 2.47 2.81 2.48 2.82 2.58 3.20 
8 N-p-tolyl-2-furo- 2.41 2.21 1.61 2.00 1.90 2.46 
9 N-m-chlorophenylbenzo- 2.73 3.08 2.58 3.29 2.73 3.39 
10 N-p-chlorophenylbenzo- 2.47 3.08 2.58 3.29 2.71 3.43 
11 N-p-chlorophenyl-2-chlorobenzo- 2.71 3.08 2.58 3.23 2.69 3.39 
12 N-o-tolyl-4-chlorobenzo- 2.79 3.44 3.13 3.73 3.01 3.83 
13 N-phenyl-4-ethoxybenzo- 2.69 2.79 2.51 3.05 2.41 3.19 
14 N-o-tolyl-4-ethoxybenzo- 2.76 3.15 3.06 3.55 2.89 3.59 
15 N-p-tolyl-4-ethoxybenzo- 2.74 3.15 3.06 3.55 2.93 3.64 

 
Table 2: Molecular Descriptors of Hydroxamic Acids 

 

Serial No. Ehomo (eV) Elumo (eV) Elumo-Ehomo (eV) Dm (Debye) αa βa Vxa (cm³·mol⁻¹) XRM (cm³·mol⁻¹) ICl 
1 -8.7084 -0.6558 8.0526 2.645 0.56 1.35 172.20 1.010 0 
2 -8.8430 -0.9426 7.9004 3.020 0.67 1.70 200.65 1.090 1 
3 -8.5895 -0.5119 8.0776 4.481 0.76 1.99 225.00 0.960 0 
4 -9.1433 -1.8483 7.2950 6.413 0.85 2.36 255.32 1.040 0 
5 -8.6581 -0.9158 7.7423 3.533 0.78 2.03 228.88 1.430 0 
6 -8.4938 -0.6125 7.8813 3.887 0.66 1.69 198.64 1.010 0 
7 -8.4922 -0.5932 7.8990 2.697 0.72 1.85 211.73 1.010 0 
8 -8.5061 -0.6591 7.8470 2.793 0.64 1.24 160.46 0.810 0 
9 -8.9460 -0.8331 8.1129 4.270 0.64 1.94 225.99 1.090 1 

10 -8.7915 -0.8552 7.9363 3.740 0.54 1.38 174.02 1.090 1 
11 -8.7044 -0.8843 7.8201 3.500 1.56 2.40 263.18 1.090 1 
12 -8.6501 -0.8554 7.7947 4.148 1.67 2.53 278.11 1.090 1 
13 -8.5552 -0.4680 8.0872 4.696 1.72 2.55 273.37 0.960 0 
14 -8.3674 -0.3810 7.9864 5.409 1.71 2.69 288.45 0.960 0 
15 -8.3317 -0.4824 7.8493 4.751 1.77 2.70 288.57 0.960 0 

 
Statistical methods 
QSPR models were developed using PLS regression as 
implemented in Simca (SIMCA-Version 11.0, Umetric AB 
and Ersoft AB) software, the condition for the computation 
were based on the default option of the software. The 
criterion used to determine the model dimensional-the 
number of significant PLS component is cross validation 
(Cv). The obtained QSPR model is considered to have good 
prediction ability when the cumulative cross validated 

regression coefficient (Q2) for the extracted component 
Q2cum, is large than 0.5. Model adequacy was mainly 
measured as the number of PLS principal component (A), 
Q2cum, their correlation coefficient between observed 
values and filled values (R). 
 
Results and Discussion  
Correlation between experimental logo/w and computated 
log P values 
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log PO/W= a+b (logP) (1) 
 
The correlation between the log Po/w and obtained by 
computation were summaries in Table 2. The 
experimentally determined log PO/W values correlate with the 
lipophilicity data (logP) computed using software XLOGP 

(r2=0.4190), KowWin (r2=0.5563), CLOGP (r2=0.5688), 
ALOGPS (r2=0.4022) and MilogP (r2=0.5202). 
The cross-validation (q2) value of experimental logP versus 
computational logP are shown in figure show that the 
programs used in present study did not give reasonable data 
for this set of compound (q2≤0.5) 

 
Table 3: Linear relationships between experimental logP and calculated logP of hydroxamic acids 

 

 a b R2 sd F n 
XLOGP 2.0485 0.1933 0.4190 0.1018 9.373 15 
KowWin 2.0788 0.2096 0.5563 0.0890 16.296 15 

ClogP 2.0087 0.1935 0.5688 0.0877 17.151 15 
ALOGPS 2.1154 0.1930 0.4022 0.1032 8.745 15 
MilogP 1.8096 0.2429 0.5202 0.0925 14.094 15 

 

 
 

Fig 1: The cross-validation (q2) logPO/W versus computed logP values of 15 Hydroxamic Acids 
 

2DQSPR analysis 
To develop the 2DQSPR, several descriptors of steric, 
electronic and hydrogen bond parameters were used to 
characterize the compounds. Molar volume and excess 
molar refraction are chosen to characterize the steric 
component. Electronic was represented by energy of highest 
occupied molecular orbital (EHOMO), energy of lowest 
unoccupied molecular orbital (ELUMO), energy GAP (ELUMO - 
EHOMO) and dipole moment (Dm). Hydrogen bond donor 
acidity, α and acceptor basicity, β as hydrogen bond 
parameter and variable indicator ICl, when chlorine atom in 
hydroxamic acid moiety ICl=1 and absent ICl=0. 
 
PLS analysis 
In a PLS model, variable importance in the projection (VIP) 
is a parameter that shows that the importance of variable. 
According to the manual of simca-p (version 11), VIP is the 
sum and all model dimensions of the contribution of 
variable influences (VIN) for given PLS dimension (a) and a 
given x term (k), VIN2 is computed form the squared PLS 
weight of that x term multiplied by the parent explained the 
sum of squares (SS) by that PLS dimension. VIP value is 
calculated from the accumulated value and all PLS 
dimension, divide by the total percent explained SS by the 
PLS, 

VIPk = ∑ (VIP)
2 
k           (2) 

Model and multiplied by the number of terms in the model. 
The terms with values of VIP are the most relvant for 
explaining depended variable. 
To obtain an optimal model the following PLS analysis 
procedure are adopted. At first, a PLS model with all the 
predictor variables was calculated. Then the variable with 
the lowest VIP value was eliminated and a new PLS 
regression was performed, leading to a new PLS model. 
This procedure was repeated till only main predictor 
variables were recommended the optimal PLS model was 
selected with respected to the statistics Q2

cum, the root mean 
square error of calibration (RMSEC) and the root mean 
square of prediction (RMSEP).  
PLS analysis was initially applied to the complete data set of 
15 compounds and 9 descriptors. The preliminary analysis 
yielded a model which accounts for 93.6% of the variation 
in logPO/W (r2 =0.936) at a predictability level of 73.0% (q2 

=0.730). It was improved by removing that parameters 
which did not make significant contributions to logPO/W 
(EHOMO, ELUMO and Dm).  
 
Analytical QSPR equation thus obtained is as follow, 
 
logPO/W = 3.160x10-1 (Vx) + 3.140 x 10-1 (α) + 2.890x10-1 
(β) + 3.132 x10-1 (ICl) + 2.531 x 10-1 (EHOMO-ELUMO)  
+5.354 x10-1 (XRM) + 20.131        (3) 
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To establish the predictive power of a model, one needs to 
divide the available data set into the training and test sets. In 
general, training set should contain 60-80% of the full data. 
For assigning compounds to training and test sets, 
compounds were ordered by logPO/W values, and every third 

was selected for the test set, the remaining compounds were 
used as a training set. The test and training sets comprised 5 
and 10 compounds, respectively and indicated in Table 4 
(Model II). The model fitting for model I and model II are 
listed in Table 5. 

 
Table 4: Calculated logP O/W of N-aryhydroxamic acids by models I and II 

 

S. No. 
logPO/W 

Model I Residue Model II Residue Training set Test set 
1. 2.449 0.051 2.464  0.036 
2. 2.571 -0.051 − 2.545 -0.025 
3. 2.563 -0.023 2.557  -0.017 
4. 2.503 0.017 2.528  -0.008 
5. 2.541 -0.001 − 2.589 -0.049 
6. 2.478 -0.018 2.491  -0.031 
7. 2.510 -0.040 − 2.519 -0.049 
8. 2.391 0.019 2.398  0.012 
9. 2.646 0.084 − 2.604 0.126 

10. 2.518 -0.028 2.496  -0.006 
11. 2.742 -0.031 2.713  -0.003 
12. 2.770 0.020 − 2.740 0.050 
13. 2.730 -0.040 2.723  -0.033 
14. 2.737 0.022 2.730  0.030 
15. 2.721 0.019 2.720  0.020 

 
Table 5: Model fitting for models I and II 

 

Models Ntr A R2 
X(adj)(cum) R2 

y (adj)(cum) Q2cum RSMEE Nts RSMEP 
I 15 1 0.466 0.829 0.791    

  2 0.664 0.913 0.867 0.041   
II 10 1 0.476 0.921 0.854    

  2 0.667 0.965 0.884 0.027 5 0.069 
Ntr = No. of compounds in training set and Nts= No. of compounds in test set. 

 
In model I, six predictor variables involved which are 
condensed into two PLS components. The VIP values of 
Vx, α and β are larger than 1, indicating that these three 

descriptors are more significant than ICl, EHOMO-ELUMO and 
XMR.  

 
Table 6: The VIPs and PLS weight (W* [1] and (W* [2]) for the molecular descriptors including in model I 

 

Model I 
Variables VIP W* [1] W* [2] 

Vx 1.333 0.556 0.016 
α 1.301 0.552 -0.068 
β 1.295 0.570 -0.004 
ICl 0.713 0.040 0.117 

ELUMO-EHOMO 0.575 0.115 0.710 
XRM 0.124 0.216 0.723 

 
Table 7: The VIPs and PLS weight (W* [1] and (W* [2]) for the molecular descriptors including in model II 

 

Model II 
Variables VIP W* [1] W* [2] 

α 1.430 0.597 0.244 
Vx 1.350 0.563 -0.094 
β 1.333 0.555 -0.134 
ICl 0.480 0.100 0.806 

ELUMO-EHOMO 0.276 0.046 0.490 
XRM 0.225 0.084 0.208 
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Fig 2: Coefficent plot for PLS model II derives from 10 hydroxamic acids and 6 descriptors based on the 2th component. 
 

The first PLS component is mainly related to Vx, α and β. 
Increasing Vx, α and β values of hydroxamic acids leads to 
increase in logPO/W values.  
The second PLS component is loaded primarily on ICl, 
EHOMO-ELUMO and XMR. As indicated by pseudo-regression 
coefficient, increasing value of ICl, EHOMO-ELUMO and XMR 
lead to increase in logPO/W values of hydroxamic acids. The 
VIPs and PLS weight of model I and model II are presented 
in Table 6 and Table 7, respectively. 
Figure 2 is the coefficient plot of the PLS model II. This

plot identifies the parameters that contributed most to 
activity (as reflected by the length of the bar), and the nature 
of the correlation (direct = positive coefficient or inverse = 
negative coefficient). Two PLS components were selected in 
model II. The first PLS component is mainly related to the 
descriptors Vx, α and β for which the W* [1] value in larger 
0.550. The second component is loaded primarily on ICl, 
EHOMO-ELUMO and XMR. Figure 3 and 4 shows the plot of 
prediced logPO/W and obseved logPO/W of model I and Model 
II, respectively.  

 

 
 

Fig 3: Plot of predicted logPO/W versus logPO/W observed values of hydroxamic acids by model I. 
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Fig 4: Plot of predicted logPO/W versus logPO/W observed values of hydroxamic Acids by model II. 
 

Conclusion 
By partial least squares (PLS) regression, QSPR model 
reported herein provide interesting insight in understanding 
the steric, electronic, hydrogen bond parameters and 
structural requirements of lipophilicity among these set of 
compounds. 
The cross validated Q2

cum values of QSPR model of 
hydroxamic acids is 0.861 (remarkably higher than 0.500), 
indicating good predictive-abilities for logPO/W values.  
The current studies indicates that increasing values of Vx, α, 
β, ICl, EHOMO-ELUMO and XMR leads to increase the 
lipophilic characters of hydroxamic acids.  
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