



**ISSN Print:** 2664-6781  
**ISSN Online:** 2664-679X  
**NAAS Rating (2025):** 4.77  
**IJACR 2025; 7(12):** 52-58  
[www.chemistryjournals.net](http://www.chemistryjournals.net)  
Received: 18-11-2025  
Accepted: 22-12-2025

**K Vijayakaran**  
Assistant Professor, Veterinary Clinical Complex, Veterinary College and Research Institute, Orathanadu, Tamil Nadu, India

**G Abimanyu**  
Undergraduate Student, Veterinary Clinical Complex, Veterinary College and Research Institute, Orathanadu, Tamil Nadu, India

**SL Kamalesh**  
Undergraduate Student, Veterinary Clinical Complex, Veterinary College and Research Institute, Orathanadu, Tamil Nadu, India

**M Sivaraman**  
Project Associate, Department of Veterinary Pharmacology and Toxicology, Veterinary College and Research Institute, Orathanadu, Tamil Nadu, India

**Corresponding Author:**  
**K Vijayakaran**  
Assistant Professor, Veterinary Clinical Complex, Veterinary College and Research Institute, Orathanadu, Tamil Nadu, India

## Qualitative phytochemical profiling and estimation of vasicine using high-performance thin layer chromatography in leaf extract of *Justicia adhatoda L.* from Thanjavur region of India

**K Vijayakaran, G Abimanyu, SL Kamalesh and M Sivaraman**

**DOI:** <https://www.doi.org/10.33545/26646781.2025.v7.i12a.347>

### Abstract

*Justicia adhatoda L.* (Acanthaceae) is an important medicinal plant widely used in traditional systems of medicine for the management of respiratory and inflammatory disorders, primarily due to the presence of the bioactive alkaloid vasicine. The present study aimed to evaluate the phytochemical profile and quantify vasicine content in *J. adhatoda* leaves collected from the Thanjavur region of Tamil Nadu, India. Ethanolic extraction of the dried leaves yielded 5.83% and qualitative phytochemical screening confirmed the presence of alkaloids, flavonoids, phenols, tannins, terpenoids, proteins and glycosides. Vasicine was quantitatively estimated using a validated High Performance Thin Layer Chromatography (HPTLC) method, which showed excellent linearity ( $R^2 = 0.9962$ ) over the range of 100-800 ng/spot. Vasicine was identified at an  $R_f$  value of 0.34 and quantified as 2.032% (w/w) on a dry weight basis. FTIR analysis further confirmed the presence of characteristic functional groups corresponding to vasicine. The study highlights the significance of regional evaluation for quality control and standardization of *Vasaka* based herbal formulations.

**Keywords:** FT-IR, HPTLC, *Justicia adhatoda L.*, vasicine, herbal formulations

### 1. Introduction

Acanthaceae family comprises a wide range of plant species, including numerous medicinally important plants as well as ornamental varieties (Sharma and Kumar, 2016) [17]. Within the family Acanthaceae, the genus *Justicia* comprises approximately 600 species and is widely distributed across tropical and temperate regions (Carneiro *et al.*, 2023) [3]. *Justicia adhatoda L.* (Figure 1) is an important medicinal plant traditionally used by Indian tribal healers and is also a well-established herbal remedy in Ayurveda and Unani systems of medicine for the treatment of cold, cough, asthma, bronchitis, tuberculosis, as well as for managing cuts, wounds, and fever (Wangujare *et al.*, 2023; Nandhini and Ilango, 2020; Bagchi *et al.*, 2003) [23, 12, 1].

This plant, commonly known as Vasaka or Malabar nut, has been used for over 3000 years in Indian traditional medicine for the prevention, management and treatment of various diseases, particularly respiratory disorders, owing to its antibacterial, antifungal, anti-asthmatic, anti-inflammatory, and anti-ulcer activities (Chowdhury *et al.*, 2020) [4]. In addition, the Ministry of AYUSH recommended *Adathodai manapagu*, a Siddha formulation containing *J. adhatoda* as the principal ingredient, along with *Kabasura kudineer*, an Ayurvedic preparation, for prophylaxis and treatment during the COVID-19 pandemic (Banerjee and Gupta, 2021) [2], in continuation of its earlier use against swine flu and dengue fever.

All parts of the plant are widely used in traditional medicine in the form of decoctions, infusions, extracts, juices, and powders to treat various ailments (Claeson *et al.*, 2000) [6]. The therapeutic potential of *J. adhatoda* is attributed to key phytoconstituents, particularly pyrroloquinazoline alkaloids such as vasicine, vasicol, adhatonine, vasicinone, vasicinol, and vasicinolone.

Among these, vasicine (Figure 2) and vasicinone are the major bioactive alkaloids and are reported to possess bronchodilatory, respiratory stimulant, and uterine stimulant activities (Soni *et al.*, 2008) [19]. As the plant grows across diverse climatic and geographical regions, vasicine content shows considerable variation, highlighting the need to identify superior chemotypes with higher alkaloid levels. Vasaka leaves are in high demand in the herbal pharmaceutical industry and are largely sourced from the wild; however, such raw materials exhibit significant quality variability (Raja *et al.*, 2008) [19]. This variation is also seasonal, with alkaloid concentrations peaking during the



**Fig 1:** *Justicia adhatoda* L.

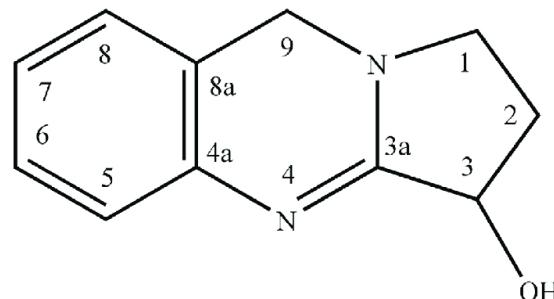
## 2. Materials and Methods

### 2.1 Collection and authentication of plant materials

Fresh leaves of *J. adhatoda* L. (Syn. *Adhatoda vasica*) were collected from various locations in Orathanadu, Thanjavur district, Tamil Nadu. The plant material was authenticated by the Department of Pharmacognosy, Siddha Central Research Institute, Arumbakkam, Chennai, and the herbarium specimen (J22042319A) was prepared and deposited in the institute repository. The leaves were shade-dried, finely powdered using a pulverizer and stored in airtight containers for further analysis.

### 2.2 Extraction and yield percentage of plant materials

One hundred grams of dried *J. adhatoda* leaf powder were exhaustively extracted with ethanol (1000 mL) using a Soxhlet apparatus. The extraction was continued until the solvent in the siphon tube became colorless, indicating completion of the process. The obtained extract was concentrated under reduced temperature (25-30 °C) and vacuum (40 mbar) employing a rotary evaporator (Büchi Rotavapor R-300, Switzerland). The concentrated extract was preserved at 4 °C for subsequent analyses. The percentage yield of the extract was calculated using the following formula:


$$\text{Percentage yield} = \frac{\text{Final weight of the dried extract}}{\text{Initial weight of the powder}} \times 100$$

### 2.3 Qualitative phytochemical analysis of crude extract

Freshly prepared *J. adhatoda* leaf extracts were subjected to preliminary qualitative phytochemical screening following standard methods described by Trease and Evans (1989) [21]. The screening was performed to identify major phytoconstituents such as alkaloids, anthraquinones, flavonoids, glycosides, phenols, tannins, steroids, resins, saponins, and terpenoids. The specific tests employed for this analysis are summarized in Table 1.

flowering phase in spring (Vasant ritu) and declining during the vegetative stage (Sharma *et al.*, 2019) [18]. Thus, it is essential to analyze the concentration of vasicine from different region to formulate a standardized herbal formulation.

The present study focuses on qualitative phytochemical screening, quantification of vasicine using High Performance Thin Layer Chromatography (HPTLC) and its confirmation through FTIR analysis in extracts of *J. adhatoda* collected from the Thanjavur region of Tamil Nadu, India.



**Fig 2:** Structure of vasicine

### 2.4 HPTLC estimation of vasicine from leaf extracts of *J. adhatoda*

#### 2.4.1 Chemicals and reagents

Vasicine (Product No PHL89821) was procured from Sigma-Aldrich (M/s Sigma Aldrich Chemicals Pvt. Ltd., USA). Precoated HPTLC silica gel 60 F<sub>254</sub> aluminum plates (20 × 10 cm, 0.25 mm thickness) were obtained from E. Merck (M/s Merck Specialities Ltd., Worli, Mumbai, India). All other chemicals and reagents used were of analytical grade.

#### 2.4.2 Standard and sample preparation

A stock solution of vasicine was prepared by dissolving 1 mg of the standard in 1 mL of methanol. This solution was subsequently diluted tenfold with methanol to obtain a working concentration of 100 µg/mL. The *J. adhatoda* leaf extract was also dissolved in methanol to yield a concentration of 10 mg/mL for spotting on the HPTLC plates.

#### 2.4.3 Calibration curve of vasicine

Different volumes (1-8 µL) of the working standard solution (100 µg/mL) were applied to the HPTLC plates to obtain vasicine concentrations ranging from 100 to 800 ng per band. The plates were then developed under optimized chromatographic conditions. Quantification was achieved by plotting peak area versus corresponding standard concentrations and the calibration curve was constructed using regression analysis.

#### 2.4.4 Instrumentation and chromatographic conditions

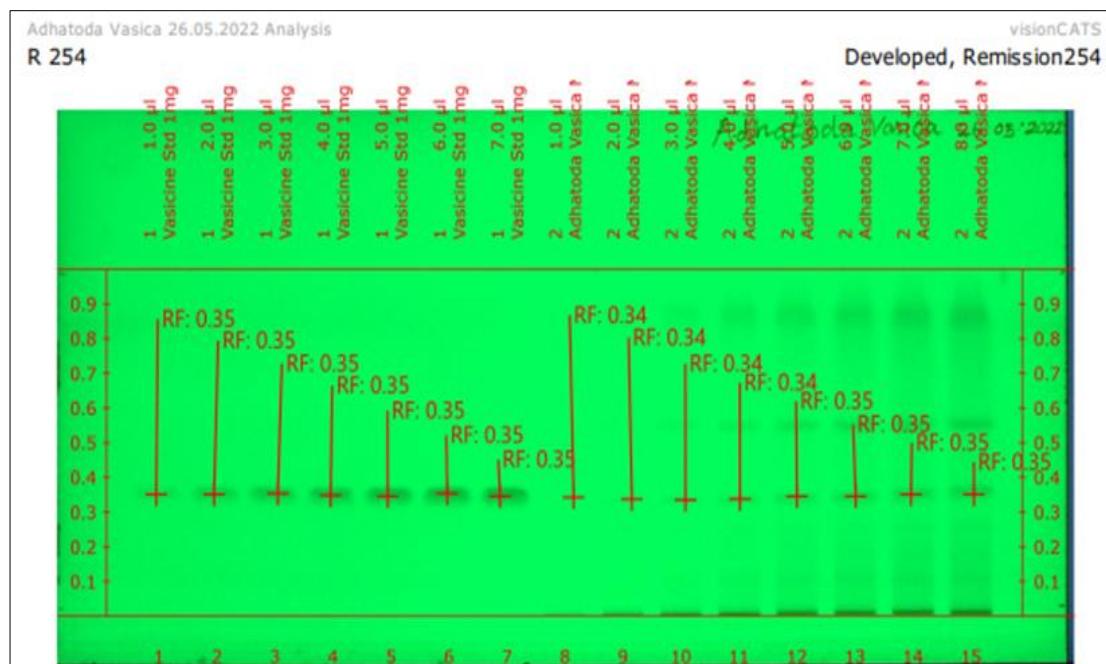
Chromatographic separation was carried out in a CAMAG glass twin-trough HPTLC chamber (20 × 10 × 4 cm) using linear ascending development. Samples were applied with a Linomat V automatic applicator (CAMAG, Muttenz, Switzerland) fitted with a 100 µL Hamilton syringe

(Bonaduz, Switzerland). Precoated silica gel 60 F<sub>254</sub> HPTLC plates (E-Merck; 20 × 10 cm, 0.25 mm thickness) served as the stationary phase, with bands applied at a width of 8 mm. Densitometric evaluation was performed using an HPTLC Scanner 4 integrated with visionCATS software (CAMAG), employing a slit dimension of 6.00 × 0.45 mm and a

scanning speed of 20 mm/s. Detection was carried out at 254 nm using deuterium and tungsten lamps. The mobile phase comprised toluene, ethyl acetate, methanol, and ammonia in the ratio of 30:30:15:1 (v/v/v/v). All analyses were conducted under controlled laboratory conditions at 25±2 °C and 55% relative humidity

**Table 1:** Procedure for qualitative phytochemical screening

| S. No.                             | Test                  | Procedure                                                                                                                                   | Result                                                                                          | Interpretation                 |
|------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|
| <b>Test for alkaloids</b>          |                       |                                                                                                                                             |                                                                                                 |                                |
| 1.                                 | Mayer's test          | 1 ml of plant extract + 2-3 drops of Mayer's reagent                                                                                        | Appearance of pale-yellow colour precipitate                                                    | Presence of alkaloids          |
| 2.                                 | Dragendorff test      | 1 ml of plant extract + 2-3 drops of Dragendorff's reagent                                                                                  | Appearance of reddish-brown colour precipitate                                                  | Presence of alkaloids          |
| 3.                                 | Wagner's test         | 1 ml of plant extract + 2-3 drops of Wagner's reagent                                                                                       | Appearance of reddish-brown colour precipitate                                                  | Presence of alkaloids          |
| 4.                                 | Hager's test          | 1 ml of plant extract + 2-3 drops of Hager's reagent                                                                                        | Appearance of orange or yellow colour precipitate                                               | Presence of alkaloids          |
| <b>Test for terpenoids</b>         |                       |                                                                                                                                             |                                                                                                 |                                |
| 5.                                 | Salkowski test        | 1 mL of plant extract + 2 mL of chloroform + conc. sulfuric acid along the sides.                                                           | Formation of yellow coloured lower layer                                                        | Presence of terpenoids         |
| <b>Test for flavonoids</b>         |                       |                                                                                                                                             |                                                                                                 |                                |
| 6.                                 | Shinoda test          | 1 mL of plant extract + few fragments of Magnesium ribbon + conc. hydrochloric acid                                                         | Appearance of pink, scarlet, crimson red or occasionally green to blue colour after few minutes | Presence of flavonoids         |
| 7.                                 | Alkaline reagent test | 1% sodium hydroxide solution + 1 mL of test solution + few drops of dil. hydrochloric acid                                                  | Turns to colourless                                                                             | Presence of flavonoids         |
| <b>Test for tannins</b>            |                       |                                                                                                                                             |                                                                                                 |                                |
| 8.                                 | Braymer's test        | 1 mL of plant extract + 1 mL of water + 2-3 drops of 5% ferric chloride solution                                                            | Formation of green colour precipitate                                                           | Presence of tannins            |
| <b>Test for saponins</b>           |                       |                                                                                                                                             |                                                                                                 |                                |
| 9.                                 | Foam test             | 2 ml of plant extract + 10 ml of distilled water (shaken well for 15 min)                                                                   | Formation of stable foam                                                                        | Presence of saponins           |
| <b>Test for carbohydrates</b>      |                       |                                                                                                                                             |                                                                                                 |                                |
| 10.                                | Benedict's test       | 1 ml of plant extract + few drops of Benedict's reagent, then boiled on water bath.                                                         | Formation of reddish-brown precipitate                                                          | Presence of carbohydrates      |
| 11.                                | Molisch test          | 0.5 ml of plant extract + few drops of alcoholic α-naphthol + 0.2 ml of conc. sulfuric acid along the sides                                 | Appearance of purple to violet colour ring                                                      | Presence of carbohydrates      |
| <b>Test for glycosides</b>         |                       |                                                                                                                                             |                                                                                                 |                                |
| 12.                                | Borntrager's test     | 1 ml of plant extract + 2 ml of dil. sulfuric acid (boiled and then filtered) + equal volume of benzene or chloroform + ammonia             | Appearance of pink colour in the ammoniacal layer                                               | Presence of glycosides         |
| <b>Test for cardiac glycosides</b> |                       |                                                                                                                                             |                                                                                                 |                                |
| 13.                                | Keller-killani test   | 1 ml of plant extract + 0.4 ml of glacial acetic acid (containing a trace amount of ferric chloride) + conc. sulphuric acid along the sides | Appearance of blue colour appears in the acetic acid layer                                      | Presence of cardiac glycosides |
| <b>Test for phenols</b>            |                       |                                                                                                                                             |                                                                                                 |                                |
| 14.                                | Ferric chloride test  | 1 ml of plant extract+ dil. Ferric chloride                                                                                                 | Formation of blue colour                                                                        | Presence of phenols            |
| <b>Test for Proteins</b>           |                       |                                                                                                                                             |                                                                                                 |                                |
| 15.                                | Millon's test         | 0.5 ml of plant extract + 2 ml of Millon's reagent. Then gently heated.                                                                     | Appearance of white precipitate                                                                 | Presence of proteins           |


#### 2.4.5 Quantification of vasicine

The *J. adhatoda* leaf extract (10 mg/mL) was applied onto clean HPTLC plates in seven different volumes (1-7 µL) along with the working standard solution. The plates were then developed (Figure 5.) and scanned following the previously described standardized conditions. Vasicine was identified by comparing the R<sub>f</sub> values of the sample bands with those of the reference standard. Quantification was performed using the calibration data derived from standard peak areas and concentrations, and the vasicine content was

expressed as a percentage of the dry weight of the powdered sample (HPTLC Association, 2021)<sup>[8]</sup>.

#### 2.5 Fourier Transform Infra-Red analysis

FT-IR analysis of the crude *J. adhatoda* leaf extract was performed to identify functional groups corresponding to different classes of phytoconstituents and to assess their compatibility using a Thermo Nicolet 6700 Fourier Transform Infrared (FT-IR) spectrometer. The liquid sample was placed in the sample cell and scanned over the wavenumber range of 4000-400 cm<sup>-1</sup>.

Fig 3: Developed HPTLC plate showing vasicine at  $R_f$  value 0.34

### 3. Results and Discussion

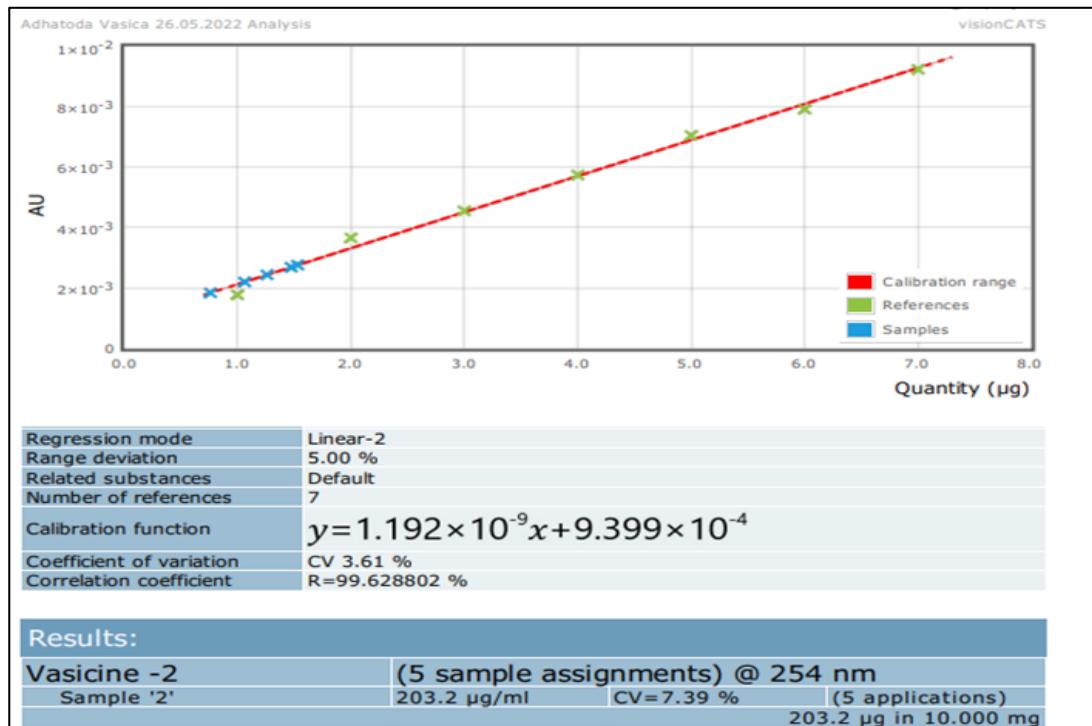
The percentage extraction yield of *J. adhatoda* leaves was 5.83%, which is comparable to the 7% yield reported by Vinothapooshan and Sundar (2010) [22]. In contrast, Srinivasan and Kumaravel (2015) [20] reported a higher yield of 16.30%, likely due to variations in geographical origin, solvent selection, extraction time, temperature, harvesting

season, and extraction methodology (Kaneria *et al.*, 2012) [10]. The results of the preliminary phytochemical screening of the *J. adhatoda* leaf extract (Table 2) indicated the presence of alkaloids, phenols, tannins, terpenoids, flavonoids, proteins, and glycosides, in agreement with the observations of Selvarani and Jeyasimha (2020) [16].

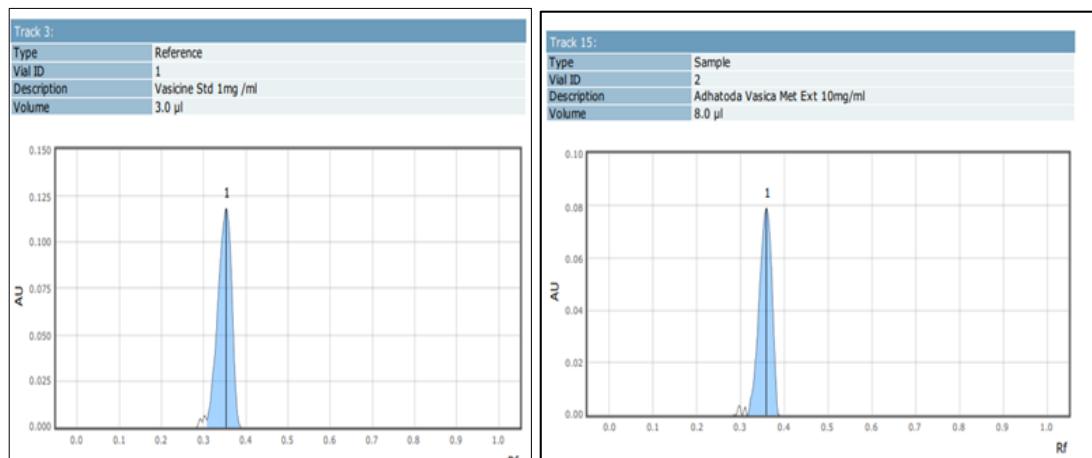
Table 2: Qualitative phytochemical analysis of *J. adhatoda* leaf extract

| S. No. | Phytochemicals examined | Name of the test      | Inference |
|--------|-------------------------|-----------------------|-----------|
| 1.     | Carbohydrates           | Benedict's test       | Negative  |
|        |                         | Molisch's test        | Negative  |
| 2.     | Saponins                | Foam test             | Negative  |
|        |                         | Mayer's test          | Positive  |
|        |                         | Dragendorff's test    | Positive  |
|        |                         | Wagner's test         | Positive  |
|        |                         | Hager's test          | Positive  |
| 4.     | Phenols                 | Ferric chloride test  | Positive  |
| 5.     | Tannins                 | Braymer's test        | Positive  |
| 6.     | Terpenoids              | Salkowski's test      | Positive  |
| 7.     | Flavonoids              | Shinoda's test        | Positive  |
|        |                         | Alkaline reagent test | Positive  |
| 8.     | Proteins                | Millon's test         | Positive  |
| 9.     | Glycosides              | Borntrager's test     | Positive  |
| 10.    | Cardiac glycosides      | Keller-killani test   | Negative  |

High Performance Thin Layer Chromatography (HPTLC) has emerged as a preferred analytical technique over conventional methods due to its simplicity, speed, accuracy, robustness, and cost-effectiveness (Dhandhukia and Thakker, 2011) [7]. In the present study, HPTLC was utilized to determine the vasicine content in *J. adhatoda* leaf extracts.


The method's linearity was evaluated using vasicine working standards over a concentration range of 100-800 ng per spot, corresponding to sample volumes of 1-8  $\mu$ L. The regression analysis yielded the equation  $Y = 1.192 \times 10^{-9} X + 9.399 \times 10^{-4}$ , with a coefficient of variation of 3.61%. A correlation coefficient of 0.9962 confirmed excellent linearity for the vasicine standard. The calibration curve for the working standard vasicine is presented in Figure 4.

The presence of vasicine in the sample was confirmed by matching the  $R_f$  values of the standard and the extract, with vasicine observed at an  $R_f$  of 0.34 on the HPTLC plate. Representative densitograms of both the standard and sample are shown in Figure 5. HPTLC analysis revealed that the vasicine content in *J. adhatoda* leaf extract was 2.032% on a dry weight basis. This value is consistent with the findings of Priya *et al.* (2021) [14], who reported a vasicine content of 1.5%.


The FT-IR absorption spectra of *J. adhatoda* leaf extract showed the peaks at 3391.08, 2973.65 & 2901.10, 2255.36 & 2133.88, 1634.97, 1453.07, 1382.85, 1337.33, 1273.75, 1082.83, 1049.12 and 647.99  $\text{cm}^{-1}$  indicates the presence of alcohol, alkane, alkyne, alkene, aromatic compound, primary alcohol, amine and disubstituted cis attributed to

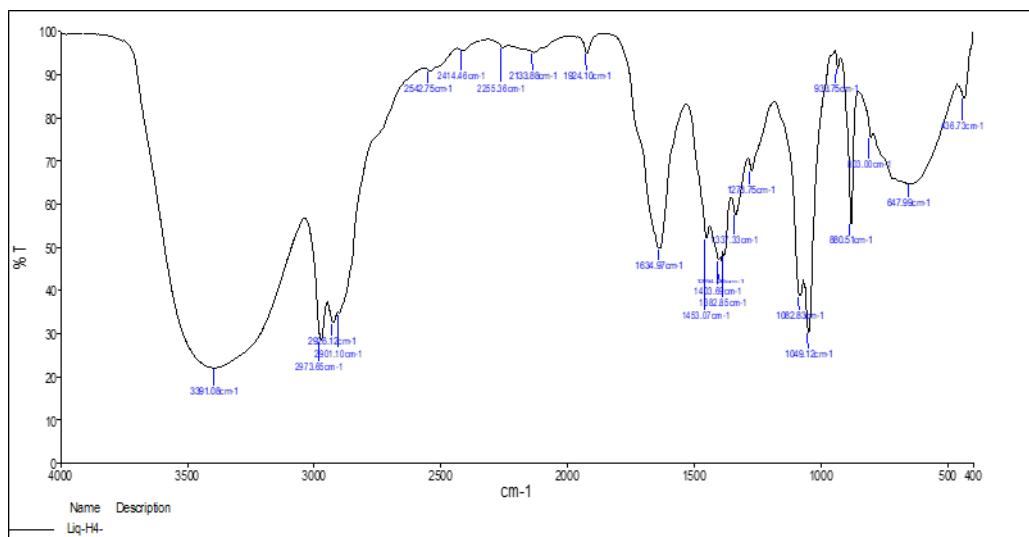
functional groups *viz.* O-H stretching, C-H stretching, C≡C stretching, C-H bending, O-H bending, C-N stretching, C=O stretching, C-N stretching, C-H out of plane bending and C=C bending. The detail is exhibited in Figure 6 and shown in Table 3. These findings are consistent with the observations made by Islam *et al.* (2021) [9]. Furthermore,

the IR spectrum of vasicine, as analyzed by Narasimhaji *et al.* (2023) [13], exhibited peaks at 3071 (hydroxyl), 2847, 1636 (>C=N), 1481, 1308, 1184, 1110, 834 and 760  $\text{cm}^{-1}$ , aligns with current observations, indicating the presence of vasicine in the *J. adhatoda* sample under investigation.



**Fig 4:** Calibration curve of vasicine (Standard) in *J. adhatoda* leaf extract




**Fig 5:** Representative densitograms of vasicine standard (a) and vasicine in sample (b)

Cimpoi (2011) [15] stated that IR spectroscopy has a high potential for the elucidation of molecular structures, and the characteristic absorption bands can be used for compound-specific detection. In future, HPTLC-FTIR coupled method can be used in the laboratories for the qualitative and quantitative analysis of herbal medicines. In the present study also the vasicine content was estimated using HPTLC and its presence was qualitatively confirmed by IR spectroscopy.

#### 4. Conclusion

The present study systematically evaluated *Justicia adhatoda* L. leaves collected from the Thanjavur region of Tamil Nadu, confirming their phytochemical richness and

suitability for standardization. HPTLC analysis demonstrated excellent linearity and precision for vasicine estimation, with the compound clearly identified at an  $R_f$  value of 0.34 and quantified at 2.032% (w/w) on a dry weight basis, indicating that the regional plant material is a good source of this therapeutically important alkaloid. FTIR spectral data further supported the presence of vasicine and related functional groups, corroborating the chromatographic findings. Collectively, these results highlight the importance of regional and chemotypic evaluation of *J. adhatoda* due to natural variability in alkaloid content and establish HPTLC, supported by FTIR, as a reliable approach for quality control and standardization of *Vasaka* based herbal formulations.

Fig 6: FTIR spectrum of *J. adhatoda* leaf extractTable 3: FTIR analysis report of *J. adhatoda* leaf extract

| S. No. | Wave number (cm <sup>-1</sup> ) | Functional groups        | Compound class    | Bonding Pattern |
|--------|---------------------------------|--------------------------|-------------------|-----------------|
| 1.     | 3391.08                         | O-H stretching           | Alcohol           | Strong, broad   |
| 2.     | 2973.65, 2901.10                | C-H Stretching           | Alkane            | Strong          |
| 3.     | 2255.36, 2133.88                | C≡C stretching           | Alkyne            | Weak            |
| 4.     | 1634.97                         | C=C stretching           | Alkene            | Medium          |
| 5.     | 1453.07, 1382.85                | C-H bending              | Alkane            | Medium          |
| 6.     | 1337.33                         | O-H bending              | Alcohol           | Medium          |
| 7.     | 1273.75                         | C-O stretching           | Aromatic compound | Medium          |
| 8.     | 1082.83                         | C-O stretching           | Primary alcohol   | Strong          |
| 9.     | 1049.12                         | C-N stretching           | Amine             | Strong          |
| 10.    | 880.51                          | C-H Out of plane bending | Aromatic group    | Medium          |
| 11.    | 647.99                          | C=C bending              | Disubstituted cis | Medium broad    |

## References

- Bagchi GD, Dwivedi PD, Haider F, Singh S, Srivastava S, Chattopadhyay SK. Seasonal variation in vasicine content in *Adhatoda* species grown under north Indian plain conditions. *J Med Aromat Plant Sci*. 2003;25:37-40.
- Banerjee SB, Gupta K. *Justicia adhatoda* having multifunctional pharmacological properties can prevent COVID-19 disease. *World J Pharm Med*. 2021;7(9):34-38.
- Carneiro MRB, Sallum LO, Martins JLR, Peixoto JDC, Napolitano HB, Rossetto LP. Overview of the *Justicia* genus: Insights into its chemical diversity and biological potential. *Molecules*. 2023;28(3):1190.
- Chowdhury II, Rahman MA, Hashem MA, Bhuiyan MMH, Hajjar D, Alelwani W, et al. Supplements of an aqueous combination of *Justicia adhatoda* and *Ocimum tenuiflorum* boost antioxidative effects and impede hyperlipidemia. *Anim Models Exp Med*. 2020;3(2):140-51.
- Cimpoi C. HPTLC hyphenated with FTIR: principles, instrumentation and qualitative analysis and quantitation. In: Sherma J, Fried B, editors. *High-performance thin-layer chromatography (HPTLC)*. Berlin: Springer; 2011, p. 385-94.
- Claeson UP, Malmfors T, Wikman G, Bruhn JG. *Adhatoda vasica*: A critical review of ethnopharmacological and toxicological data. *J Ethnopharmacol*. 2000;72(1-2):1-20.
- Dhandhukia PC, Thakker JN. Quantitative analysis and validation of methods using HPTLC. In: Sherma J, Fried B, Editors. *High-performance thin-layer chromatography (HPTLC)*. Berlin: Springer; 2011, p. 203-21.
- HPTLC Association. *Adhatoda vasica* leaf. *Ph Eur*. 2021;V1.
- Islam MJ, Khatun MT, Rahman MR, Alam MM. Green synthesis of copper oxide nanoparticles using *Justicia adhatoda* leaf extract and its application in cotton fibers as antibacterial coatings. *AIP Adv*. 2021;11(12):125128.
- Kaneria M, Kanani B, Chanda S. Effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants. *Asian Pac J Trop Biomed*. 2012;2(3):195-202.
- Marndi S, Walling T, Sampatrao TS, Kumar S. *Justicia adhatoda* L.: a medicinal shrub of India. In: *Medicinal Acanthaceae of India*. 2024;Vol I:1-10.
- Nandhini S, Ilango K. Comparative pharmacognostical, phytochemical investigations and quantification of vasicine in *Adhatoda vasica* and *Adhatoda beddomei*. *Pharmacogn J*. 2020;12(4):748-55.
- Narasimhaji CV, Kumar V, Shanmugam M, Singh R, Singh A, Marimuthu G, et al. *Justicia adhatoda* L. vasicine and vasicinone as bioactive phytochemicals: isolation, characterization and computational studies. *Results Chem*. 2023;6:101127.
- Priya MS, Jagadeeswaran A, Raja MJ, Natarajan A, Srinivasan P, Ranganathan V. Phytochemical analysis of *Adhatoda vasica* and identification of alkaloid vasicine using HPTLC. *Pharma Innov J*. 2021;10(9):1370-7.

15. Raja SS, Unnikrishnan KP, George S, Remashree AB, Udayan PS, Tushar KV, Balachandran I. Variation in vasicine content and pharmacognostic characters of morphotypes of *Adhatoda zeylanica* Medic. 2008;61-68.
16. Selvarani M, Jeyasimga V. Phytochemical screening and bactericidal potency of *Justicia adhatoda* against clinical pathogens. Asian J Pharm Clin Res. 2020;13(10):72-76.
17. Sharma A, Kumar A. Acanthaceae: taxonomy and uses in traditional medicinal systems. World J Pharm Res. 2016;5(7):403-12.
18. Sharma N, Cheemalapati VN, Mangal AK, Rekha P, Srikanth N. Vasa (*Justicia adhatoda* L.) leaves: Best procurement time with reference to vasicine assay by HPLC. J Drug Res Ayurvedic Sci. 2019;4(4):168-174.
19. Soni S, Anandjiwala S, Patel G, Rajani M. Validation of different methods of preparation of *Adhatoda vasica* leaf juice by quantification of total alkaloids and vasicine. Indian J Pharm Sci. 2008;70(1):36-42.
20. Srinivasan K, Kumaravel S. Impact of solvent extraction on phytochemical profiling of *Adhatoda vasica*. Int J Pharm Res Health Sci. 2015;3(6):874-879.
21. Trease GE, Evans WC. Pharmacognosy. 13<sup>th</sup> Ed. London: ELBS/Bailliere Tindall; 1989, p. 345-6.
22. Vinothapooshan G, Sundar K. Wound healing effect of various extracts of *Adhatoda vasica*. 2010, p. 536.
23. Wangujare AS, Gaikwad KA, Misal UA, Raykar VR, Padol AG. A review on medicinal significance of *Justicia adhatoda*. Int J Sci Dev Res. 2023;8(5):1226-1229.